|
|
Construction of multi-walled carbon nanotubes/ZnSnO3 heterostructures for enhanced acetone sensing performance |
Liyong Du(杜丽勇)1,† and Heming Sun(孙鹤鸣)2 |
1 Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China; 2 College of Physics, Jilin University, Changchun 130012, China |
|
|
Abstract Carbon nanotubes (CNTs) have attracted many researcher's attention in gas sensing field because of their excellent physical and chemical properties. Herein, multi-walled carbon nanotubes (MWCNTs)/ZnSnO3 heterostructures have been obtained by a simple hydrothermal method without additional annealing process. The structural and composition information are characterized by x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). The acetone sensing properties of pure MWCNTs, ZnSnO3 and MWCNTs/ZnSnO3 heterostructures are systematically investigated, respectively. The results show that MWCNTs/ZnSnO3 heterostructures have better sensing properties compared with pure MWCNTs and ZnSnO3 sample. Specifically, MWCNTs/ZnSnO3 heterostructures exhibit not only high responses of 24.1 and rapid response/recovery speed of 1 s/9 s to 100 ppm acetone, but also relatively good repeatability and long-term stability. The enhanced sensing performance is analyzed in detail. In addition, this work provides the experimental and theory basis for synthesis of high-performance MWCNT-based chemical sensors.
|
Received: 07 June 2022
Revised: 10 August 2022
Accepted manuscript online: 16 August 2022
|
PACS:
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
68.47.Gh
|
(Oxide surfaces)
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
Fund: Project supported by Fundamental Research Program of Shanxi Province, China (Grant No. 202103021223004) and Fundamental Research Fund of Taiyuan University (Grant No. 21TYKQ21). |
Corresponding Authors:
Liyong Du
E-mail: 495431287@qq.com
|
Cite this article:
Liyong Du(杜丽勇) and Heming Sun(孙鹤鸣) Construction of multi-walled carbon nanotubes/ZnSnO3 heterostructures for enhanced acetone sensing performance 2023 Chin. Phys. B 32 050701
|
[1] Zhang X M, Dong Z J, Liu S R, Shi Y, Dong Y H and Feng W 2017 Sens. Actuators B 243 1224 [2] Righettoni M, Tricoli A and Pratsinis S E 2010 Anal. Chem. 82 3581 [3] Deng C H, Zhang J, Yu X F, Zhang W and Zhang X M 2004 J. Chromatogr. B 810 269 [4] Zhang J Z and Yan Y 2017 J. Mater. Sci. 52 13711 [5] Wei Q, Song P, Li Z Q, Yang Z X and Wang Q 2019 Vacuum 162 85 [6] Wang Z, Fan S X and Tang W 2022 Chin. Phys. B 31 028101 [7] Li Y Z, Feng Q J, Shi B, Gao C, Wang D Y and Liang H W 2020 Chin. Phys. B 29 018102 [8] Cao J, Zhang N R, Wang S M and Zhang H M 2020 J. Colloid. Interf. Sci. 577 19 [9] Du L Y, Xiao P D, Liu Y, Zhai C B, Wang D X and Zhang M Z 2020 J. Alloys Compd. 828 154463 [10] Yin Y Y, Shen Y B, Zhou P F, Lu R, Li A, Zhao S K, Liu W G, Wei D Z and Wei K F 2020 Appl. Surf. Sci. 509 145335 [11] Wang T L, Wang X D, Wang Y, Yi G Y, Shi C, Yang Y Q, Sun G and Zhang Z Y 2022 Mater. Sci. Semicond. Process. 140 106403 [12] Zhai C B, Zhao Q, Gu K K, Xing D J and Zhang M Z 2019 J. Alloys Compd. 784 660 [13] Rong A, Gao X P, Li G R, Yan T Y, Zhu H Y, Qu J Q and Song D Y 2006 J. Phys. Chem. B 110 14754 [14] Chen J, Luo W S, Yu S J, Yang X X, Wu Z, Zhang H F, Gao J, Mai Y W, Li Y X and Jia Y M 2020 Ceram. Int. 46 9786 [15] Wu J M, Xu C, Zhang Y, Yang Y, Zhou Y and Wang Z L 2012 Adv. Mater. 24 6094 [16] Lee J H 2009 Sens. Actuators B 140 319 [17] Barsan N, Koziej D and Weimar U 2007 Sens. Actuators B 121 18 [18] Zhou T T, Zhang T, Zhang R, Lou Z, Deng J N and Wang L L 2017 ACS Appl. Mater. Interfaces 9 14525 [19] Wang D, Pu X X, Yu X, Bao L P, Cheng Y, Xu J C, Han S N, Ma Q X and Wang X Y 2022 J. Colloid. Interf. Sci. 608 1074 [20] Sa B S, Zito C A, Perfecto T M and Volanti D P 2021 Sens. Actuators B: Chem. 338 129869 [21] Bandal H A, Jadhav A R, Chaugule A A, Chung W J and Kim H 2016 Electrochim. Acta 222 1316 [22] Dai M, Zhao L, Gao H, Sun P, Liu F, Zhang S, Shimanoe K, Yamazoe N and Lu G Y 2017 ACS Appl. Mater. Interfaces 9 8919 [23] Zhang R, Zhang M, Zhou T T and Zhang T 2018 Inorg. Chem. Front. 5 2563 [24] Jia X H, Cheng C D, Yu S W, Yang J, Li Y and Song H J 2019 Sens. Actuators B 300 127012 [25] Yang M, Au C T, Deng G W, Mathur S Y, Huang Q P, Luo X L, Xie G Z, Tai H L, Jiang Y D, Chen C X, Cui Z, Liu X Y, He C Z, Su Y J and Chen J 2021 ACS Appl. Mater. Interfaces 13 52850 [26] Yang T Y, Gu K K, Zhu M M, Lu Q, Zhai C B, Zhao Q, Yang X D and Zhang M Z 2019 Sens. Actuators B 279 410 [27] Du L Y, Gu K K, Zhu M M, Zhang J and Zhang M Z 2019 Sens. Actuators B 288 298 [28] Zhang Y C, Gao S T and Xing H L 2019 J. Alloys Compd. 777 544 [29] Rosehr A, Griebe D and Luinstra G A 2018 Compos. Sci. Technol. 156 28 [30] Jia X H, Tian M G, Dai R R, Lian D D, Han S, Wu X Y and Song H J 2017 Sens. Actuators B 240 376 [31] Wang L L, Tang K B, Liu Z P, Wang D K, Sheng J and Cheng W 2011 J. Mater. Chem. 21 4352 [32] Wang Y D and Cheng T 2009 Electrochim. Acta 54 3510 [33] Ding H, Zhu J H, Jiang J, Ding R M, Feng Y M, Wei G M and Huang X T 2012 RSC Adv. 2 10324 [34] Zhang G C, Han X, Bian W W, Zhan J H and Ma X C 2016 RSC Adv. 6 3919 [35] Bai S L, Tian Y, Zhao Y H, Fu H, Tang P G, Luo R X, Li D Q, Chen A F and Li C C 2018 Sens. Actuators B 259 908 [36] Chen Q, Ma S Y, Jiao H Y, Zhang G H, Chen H, Xu X L, Yang H M and Qiang Z 2017 Ceram. Int. 43 1617 [37] Huang J R, Xu X J, Gu C P, Wang W Z, Geng B Y, Sun Y F and Liu J H 2012 Sens. Actuators B 171 572 [38] Chen Y J, Yu L, Li Q, Wu Y, Li Q H and Wang T H 2012 Nanotechnology 23 415501 [39] Lu L Z, Zhang A Q, Xiao Y H, Gong F L, Jia D Z and Li F 2012 Mater. Sci. Eng. B 177 942 [40] Zhang J T, Jia X H, Lian D D, Yang J, Wang S Z, Li Y and Song H J 2021 Appl. Surf. Sci. 542 148555 [41] Lian D D, Shi B, Dai R R, Jia X H and Wu X Y 2017 J. Nanopart. Res. 19 401 [42] Yang D J, Kamienchick I, Youn D Y, Rothschild A and Kim I D 2010 Adv. Funct. Mater. 20 4258 [43] Yang T Y, Yu H, Xiao B X, Li Z F and Zhang M Z 2017 J. Alloys Compd. 699 921 [44] Sin M, Chow G, Wong G, Li W, Leong P and Wong K 2007 IEEE Trans. Nanotechnol. 6 571 [45] Wang Z H, Zhang K C, Fei T, Gu F B and Han D M 2020 Sens. Actuators B 318 128191 [46] Kim J H, Lee J H, Mirzaei A, Kim H W and Kim S S 2017 Sens. Actuators B 248 500 [47] Yang Y, Zhao S H, Bi F K, Chen J F, Wang Y X, Cui L F, Xu J C and Zhang X D 2022 Appl. Catal. B 315 121550 [48] Wu J J, Huang Q W, Zeng D W, Zhang S P, Yang L, Xia D S, Xiong Z D and Xie C S 2014 Sens. Actuators B 198 62 [49] Qin Y X and Ye Z H 2016 Sens. Actuators B 222 499 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|