Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050701    DOI: 10.1088/1674-1056/ac89da
GENERAL Prev   Next  

Construction of multi-walled carbon nanotubes/ZnSnO3 heterostructures for enhanced acetone sensing performance

Liyong Du(杜丽勇)1,† and Heming Sun(孙鹤鸣)2
1 Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China;
2 College of Physics, Jilin University, Changchun 130012, China
Abstract  Carbon nanotubes (CNTs) have attracted many researcher's attention in gas sensing field because of their excellent physical and chemical properties. Herein, multi-walled carbon nanotubes (MWCNTs)/ZnSnO3 heterostructures have been obtained by a simple hydrothermal method without additional annealing process. The structural and composition information are characterized by x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). The acetone sensing properties of pure MWCNTs, ZnSnO3 and MWCNTs/ZnSnO3 heterostructures are systematically investigated, respectively. The results show that MWCNTs/ZnSnO3 heterostructures have better sensing properties compared with pure MWCNTs and ZnSnO3 sample. Specifically, MWCNTs/ZnSnO3 heterostructures exhibit not only high responses of 24.1 and rapid response/recovery speed of 1 s/9 s to 100 ppm acetone, but also relatively good repeatability and long-term stability. The enhanced sensing performance is analyzed in detail. In addition, this work provides the experimental and theory basis for synthesis of high-performance MWCNT-based chemical sensors.
Keywords:  carbon nanotube      ZnSnO3      p-n heterostructures      acetone  
Received:  07 June 2022      Revised:  10 August 2022      Accepted manuscript online:  16 August 2022
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  68.47.Gh (Oxide surfaces)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by Fundamental Research Program of Shanxi Province, China (Grant No. 202103021223004) and Fundamental Research Fund of Taiyuan University (Grant No. 21TYKQ21).
Corresponding Authors:  Liyong Du     E-mail:  495431287@qq.com

Cite this article: 

Liyong Du(杜丽勇) and Heming Sun(孙鹤鸣) Construction of multi-walled carbon nanotubes/ZnSnO3 heterostructures for enhanced acetone sensing performance 2023 Chin. Phys. B 32 050701

[1] Zhang X M, Dong Z J, Liu S R, Shi Y, Dong Y H and Feng W 2017 Sens. Actuators B 243 1224
[2] Righettoni M, Tricoli A and Pratsinis S E 2010 Anal. Chem. 82 3581
[3] Deng C H, Zhang J, Yu X F, Zhang W and Zhang X M 2004 J. Chromatogr. B 810 269
[4] Zhang J Z and Yan Y 2017 J. Mater. Sci. 52 13711
[5] Wei Q, Song P, Li Z Q, Yang Z X and Wang Q 2019 Vacuum 162 85
[6] Wang Z, Fan S X and Tang W 2022 Chin. Phys. B 31 028101
[7] Li Y Z, Feng Q J, Shi B, Gao C, Wang D Y and Liang H W 2020 Chin. Phys. B 29 018102
[8] Cao J, Zhang N R, Wang S M and Zhang H M 2020 J. Colloid. Interf. Sci. 577 19
[9] Du L Y, Xiao P D, Liu Y, Zhai C B, Wang D X and Zhang M Z 2020 J. Alloys Compd. 828 154463
[10] Yin Y Y, Shen Y B, Zhou P F, Lu R, Li A, Zhao S K, Liu W G, Wei D Z and Wei K F 2020 Appl. Surf. Sci. 509 145335
[11] Wang T L, Wang X D, Wang Y, Yi G Y, Shi C, Yang Y Q, Sun G and Zhang Z Y 2022 Mater. Sci. Semicond. Process. 140 106403
[12] Zhai C B, Zhao Q, Gu K K, Xing D J and Zhang M Z 2019 J. Alloys Compd. 784 660
[13] Rong A, Gao X P, Li G R, Yan T Y, Zhu H Y, Qu J Q and Song D Y 2006 J. Phys. Chem. B 110 14754
[14] Chen J, Luo W S, Yu S J, Yang X X, Wu Z, Zhang H F, Gao J, Mai Y W, Li Y X and Jia Y M 2020 Ceram. Int. 46 9786
[15] Wu J M, Xu C, Zhang Y, Yang Y, Zhou Y and Wang Z L 2012 Adv. Mater. 24 6094
[16] Lee J H 2009 Sens. Actuators B 140 319
[17] Barsan N, Koziej D and Weimar U 2007 Sens. Actuators B 121 18
[18] Zhou T T, Zhang T, Zhang R, Lou Z, Deng J N and Wang L L 2017 ACS Appl. Mater. Interfaces 9 14525
[19] Wang D, Pu X X, Yu X, Bao L P, Cheng Y, Xu J C, Han S N, Ma Q X and Wang X Y 2022 J. Colloid. Interf. Sci. 608 1074
[20] Sa B S, Zito C A, Perfecto T M and Volanti D P 2021 Sens. Actuators B: Chem. 338 129869
[21] Bandal H A, Jadhav A R, Chaugule A A, Chung W J and Kim H 2016 Electrochim. Acta 222 1316
[22] Dai M, Zhao L, Gao H, Sun P, Liu F, Zhang S, Shimanoe K, Yamazoe N and Lu G Y 2017 ACS Appl. Mater. Interfaces 9 8919
[23] Zhang R, Zhang M, Zhou T T and Zhang T 2018 Inorg. Chem. Front. 5 2563
[24] Jia X H, Cheng C D, Yu S W, Yang J, Li Y and Song H J 2019 Sens. Actuators B 300 127012
[25] Yang M, Au C T, Deng G W, Mathur S Y, Huang Q P, Luo X L, Xie G Z, Tai H L, Jiang Y D, Chen C X, Cui Z, Liu X Y, He C Z, Su Y J and Chen J 2021 ACS Appl. Mater. Interfaces 13 52850
[26] Yang T Y, Gu K K, Zhu M M, Lu Q, Zhai C B, Zhao Q, Yang X D and Zhang M Z 2019 Sens. Actuators B 279 410
[27] Du L Y, Gu K K, Zhu M M, Zhang J and Zhang M Z 2019 Sens. Actuators B 288 298
[28] Zhang Y C, Gao S T and Xing H L 2019 J. Alloys Compd. 777 544
[29] Rosehr A, Griebe D and Luinstra G A 2018 Compos. Sci. Technol. 156 28
[30] Jia X H, Tian M G, Dai R R, Lian D D, Han S, Wu X Y and Song H J 2017 Sens. Actuators B 240 376
[31] Wang L L, Tang K B, Liu Z P, Wang D K, Sheng J and Cheng W 2011 J. Mater. Chem. 21 4352
[32] Wang Y D and Cheng T 2009 Electrochim. Acta 54 3510
[33] Ding H, Zhu J H, Jiang J, Ding R M, Feng Y M, Wei G M and Huang X T 2012 RSC Adv. 2 10324
[34] Zhang G C, Han X, Bian W W, Zhan J H and Ma X C 2016 RSC Adv. 6 3919
[35] Bai S L, Tian Y, Zhao Y H, Fu H, Tang P G, Luo R X, Li D Q, Chen A F and Li C C 2018 Sens. Actuators B 259 908
[36] Chen Q, Ma S Y, Jiao H Y, Zhang G H, Chen H, Xu X L, Yang H M and Qiang Z 2017 Ceram. Int. 43 1617
[37] Huang J R, Xu X J, Gu C P, Wang W Z, Geng B Y, Sun Y F and Liu J H 2012 Sens. Actuators B 171 572
[38] Chen Y J, Yu L, Li Q, Wu Y, Li Q H and Wang T H 2012 Nanotechnology 23 415501
[39] Lu L Z, Zhang A Q, Xiao Y H, Gong F L, Jia D Z and Li F 2012 Mater. Sci. Eng. B 177 942
[40] Zhang J T, Jia X H, Lian D D, Yang J, Wang S Z, Li Y and Song H J 2021 Appl. Surf. Sci. 542 148555
[41] Lian D D, Shi B, Dai R R, Jia X H and Wu X Y 2017 J. Nanopart. Res. 19 401
[42] Yang D J, Kamienchick I, Youn D Y, Rothschild A and Kim I D 2010 Adv. Funct. Mater. 20 4258
[43] Yang T Y, Yu H, Xiao B X, Li Z F and Zhang M Z 2017 J. Alloys Compd. 699 921
[44] Sin M, Chow G, Wong G, Li W, Leong P and Wong K 2007 IEEE Trans. Nanotechnol. 6 571
[45] Wang Z H, Zhang K C, Fei T, Gu F B and Han D M 2020 Sens. Actuators B 318 128191
[46] Kim J H, Lee J H, Mirzaei A, Kim H W and Kim S S 2017 Sens. Actuators B 248 500
[47] Yang Y, Zhao S H, Bi F K, Chen J F, Wang Y X, Cui L F, Xu J C and Zhang X D 2022 Appl. Catal. B 315 121550
[48] Wu J J, Huang Q W, Zeng D W, Zhang S P, Yang L, Xia D S, Xiong Z D and Xie C S 2014 Sens. Actuators B 198 62
[49] Qin Y X and Ye Z H 2016 Sens. Actuators B 222 499
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S. Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), and Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[6] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[7] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[8] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[9] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[10] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[11] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[12] Acetone sensors for non-invasive diagnosis of diabetes based on metal-oxide-semiconductor materials
Yujie Li(李育洁), Min Zhang(张敏), Haiming Zhang(张海明). Chin. Phys. B, 2020, 29(9): 090702.
[13] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
[14] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[15] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
No Suggested Reading articles found!