CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic structure of cuprate-nickelate infinite-layer heterostructure |
Dachuan Chen(陈大川)1,2, Paul Worm3, Liang Si(司良)4,3, Chunxiao Zhang(张春小)5, Fenglin Deng(邓凤麟)1, Peiheng Jiang(蒋沛恒)1,†, and Zhicheng Zhong(钟志诚)1,‡ |
1. CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3. Institut für Festkörperphysik, TU Wien, Vienna 1040, Austria; 4. School of Physics, Northwest University, Xi'an 710127, China; 5. School of Physics and Optoelectronic Engineering, Shandong University of Technology, Shandong 250049, China |
|
|
Abstract The discovery of superconductivity in Sr/Ca-doped infinite-layer nickelates Nd(La)NiO2 thin films inspired extensive experimental and theoretical research. However, research on the possibilities of enhanced critical temperature by interface heterostructure is still lacking. Due to the similarities of the crystal structure and band structure of infinite-layer nickelate LaNiO2 and cuprate CaCuO2, we investigate the crystal, electronic and magnetic properties of LaNiO2:CaCuO2 heterostructure using density functional theory and dynamical mean-field theory. Our theoretical results demonstrate that, even a very weak inter-layer z-direction bond is formed, an intrinsic charge transfer between Cu-3dx2-y2 and Ni-3dx2-y2 orbitals is obtained. The weak interlayer hopping between Cu and Ni leaves a parallel band contributed by Ni/Cu-3dx2-y2 orbitals near the Fermi energy. Such an infinite-layer heterostructure with negligible interlayer interaction and robust charge transfer opens a new way for interface engineering and nickelate superconductors.
|
Received: 28 February 2023
Revised: 05 May 2023
Accepted manuscript online: 09 May 2023
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos.2021YFA0718900 and 2022YFA1403000), the Key Research Program of Frontier Sciences of CAS (Grant No.ZDBS-LY-SLH008), the National Natural Science Foundation of China (Grant Nos.11974365, 12004400, and 51931011), the Science Center of the National Natural Science Foundation of China(Grant No.52088101), and the K. C. Wong Education Foundation (Grant No.GJTD-2020-11). Calculations were performed at the Supercomputing Center of Ningbo Institute of Materials Technology and Engineering and Vienna Scientific Clusters (VSC). |
Corresponding Authors:
Peiheng Jiang, Zhicheng Zhong
E-mail: jiangph@nimte.ac.cn;zhong@nimte.ac.cn
|
Cite this article:
Dachuan Chen(陈大川), Paul Worm, Liang Si(司良), Chunxiao Zhang(张春小), Fenglin Deng(邓凤麟), Peiheng Jiang(蒋沛恒), and Zhicheng Zhong(钟志诚) Electronic structure of cuprate-nickelate infinite-layer heterostructure 2023 Chin. Phys. B 32 087105
|
[1] Li D, Lee K, Wang B Y, et al. 2022 Innovation 3 100202 [8] Zhang J and Tao X 2021 CrystEngComm 23 3249 [9] Nomura Y and Arita R 2022 Rep. Prog. Phys. 85 052501 [10] Tokura Y and Nagaosa N 2000 Science 288 462 [11] Poeppelmeier K R and Rondinelli J M 2016 Nat. Chem. 8 292 [12] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1 [13] Chakhalian J, Freeland J, Habermeier H U, et al. 2007 Science 318 1114 [14] Hansmann P, Yang X, Toschi A, et al. 2009 Phys. Rev. Lett. 103 016401 [15] Catalano S, Gibert M, Fowlie J, et al. 2018 Rep. Prog. Phys. 81 046501 [16] Chakhalian J, Freeland J W, Millis A J, et al. 2014 Rev. Mod. Phys. 86 1189 [17] Chen X, Zhang S, Liu B, et al. 2021 Phys. Rev. B 104 045310 [18] Lee K W and Pickett W 2004 Phys. Rev. B 70 165109 [19] Karp J, Botana A S, Norman M R, et al. 2020 Phys. Rev. X 10 021061 [20] Been E, Lee W S, Hwang H Y, et al. 2021 Phys. Rev. X 11 011050 [21] Kapeghian J and Botana A S 2020 Phys. Rev. B 102 205130 [22] Jiang P, Si L, Liao Z, et al. 2019 Phys. Rev. B 100 201106 [23] Yang Y F and Zhang G M 2022 Front. Phys. 9 783 [24] Zhang G M, Yang Y F and Zhang F C 2020 Phys. Rev. B 101 020501 [25] Gu Y, Zhu S, Wang X, et al. 2020 Commun. Phys. 3 84 [26] Zhang M, Zhang Y, Guo H M, et al. 2021 Chin. Phys. B 30 108204 [27] Chen D, Jiang P, Si L, et al. 2022 Phys. Rev. B 106 045105 [28] Hybertsen M S, Stechel E, Schluter M, et al. 1990 Phys. Rev. B 41 11068 [29] Fischer M H and Kim E A 2011 Phys. Rev. B 84 144502 [30] Vaknin D, Sinha S, Moncton D, et al. 1987 Phys. Rev. Lett. 58 2802 [31] Pickett W E 1989 Rev. Mod. Phys. 61 433 [32] Armitage N, Fournier P and Greene R 2010 Rev. Mod. Phys. 82 2421 [33] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [34] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [36] Bellaiche L and Vanderbilt D 2000 Phys. Rev. B 61 7877 [37] Wannier G H 1937 Phys. Rev. 52 191 [38] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys. Condens. Matter 32 165902 [39] Kuneś J, Arita R, Wissgott P, et al. 2010 Comput. Phys. Commun. 181 1888 [40] Gull E, Millis A J, Lichtenstein A I, et al. 2011 Rev. Mod. Phys. 83 349 [41] Wallerberger M, Hausoel A, Gunacker P, et al. 2019 Comput. Phys. Commun. 235 388 [42] Parragh N, Toschi A, Held K, et al. 2012 Phys. Rev. B 86 155158 [43] Sandvik A W 1998 Phys. Rev. B 57 10287 [44] Gubernatis J, Jarrell M, Silver R, et al. 1991 Phys. Rev. B 44 6011 [45] Anderson P W 1987 Science 235 1196 [46] Gull E and Millis A 2015 Nat. Phys. 11 808 [47] Jiang H C and Devereaux T P 2019 Science 365 1424 [48] Zaanen J, Sawatzky G and Allen J 1985 Phys. Rev. Lett. 55 418 [49] Goodge B H, Li D, Lee K, et al. 2021 Proc. Natl. Acad. Sci. USA 118 e2007683118 [50] Jiang M 2021 Chin. Phys. B 30 107103 [51] Deng F, Jiang P, Lu Y, et al. 2021 Europhys. Lett. 135 67001 [52] Kitatani M, Si L, Janson O, et al. 2020 npj Quantum Mater. 5 59 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|