Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047302    DOI: 10.1088/1674-1056/ad24d7
RAPID COMMUNICATION Prev   Next  

Improving the electrical performances of InSe transistors by interface engineering

Tianjun Cao(曹天俊)1, Song Hao(郝松)2,†, Chenchen Wu(吴晨晨)1, Chen Pan(潘晨)2, Yudi Dai(戴玉頔)1, Bin Cheng(程斌)2, Shi-Jun Liang(梁世军)1,‡, and Feng Miao(缪峰)1,§
1 Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
2 Institute of Interdisciplinary Physical Sciences, School of Physics, Nanjing University of Science and Technology, Nanjing 210014, China
Abstract  InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance. However, the efficacy of the InSe transistor in meeting application requirements is hindered due to its sensitivity to interfaces. In this study, we have achieved notable enhancement in the electrical performance of InSe transistors through interface engineering. We engineered an InSe/h-BN heterostructure, effectively suppressing dielectric layer-induced scattering. Additionally, we successfully established excellent metal—semiconductor contacts using graphene ribbons as a buffer layer. Through a methodical approach to interface engineering, our graphene/InSe/h-BN transistor demonstrates impressive on-state current, field-effect mobility, and on/off ratio at room temperature, reaching values as high as 1.1 mA/μm, 904 cm2·V-1·s-1, and >106, respectively. Theoretical computations corroborate that the graphene/InSe heterostructure shows significant interlayer charge transfer and weak interlayer interaction, contributing to the enhanced performance of InSe transistors. This research offers a comprehensive strategy to elevate the electrical performance of InSe transistors, paving the way for their utilization in future electronic applications.
Keywords:  two-dimensional materials      InSe      van der Waals heterostructure      electrical performances      charge density difference  
Received:  12 December 2023      Revised:  30 January 2024      Accepted manuscript online:  01 February 2024
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.40.Ns (Metal-nonmetal contacts)  
Fund: Song Hao thanks the support of the National Natural Science Foundation of China (Grant No. 62204030). This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 62122036, 62034004, 61921005, 61974176, and 12074176) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB44000000)
Corresponding Authors:  Song Hao, Shi-Jun Liang, Feng Miao     E-mail:  hao@nju.edu.cn;sjliang@nju.edu.cn;miao@nju.edu.cn

Cite this article: 

Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰) Improving the electrical performances of InSe transistors by interface engineering 2024 Chin. Phys. B 33 047302

[1] Zhou J, Zhu C, Zhou Y, Dong J, Li P, Zhang Z, Wang Z, Lin Y C, Shi J, Zhang R, Zheng Y, Yu H, Tang B, Liu F, Wang L, Liu L, Liu G B, Hu W, Gao Y, Yang H, Gao W, Lu L, Wang Y, Suenaga K, Liu G, Ding F, Yao Y and Liu Z 2023 Nat. Mater. 22 450
[2] Chang C, Chen W, Chen Y, Chen Y, Chen Y, Ding F, Fan C, Fan H J, Fan Z and Gong C 2021 Acta Phys. Chim. Sin. 37 2108017
[3] Shin J, Kim H, Sundaram S, Jeong J, Park B I, Chang C S, Choi J, Kim T, Saravanapavanantham M, Lu K, Kim S, Suh J M, Kim K S, Song M K, Liu Y, Qiao K, Kim J H, Kim Y, Kang J H, Kim J, Lee D, Lee J, Kim J S, Lee H E, Yeon H, Kum H S, Bae S H, Bulovic V, Yu K J, Lee K, Chung K, Hong Y J, Ougazzaden A and Kim J 2023 Nature 614 81
[4] Lu G, Yu K, Wen Z and Chen J 2013 Nanoscale 5 1353
[5] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H and Lanzara A 2007 Nat. Mater. 6 770
[6] Zhou Z, Hou F, Huang X, Wang G, Fu Z, Liu W, Yuan G, Xi X, Xu J, Lin J and Gao L 2023 Nature 621 499
[7] Zhang K, She Y, Cai X, Zhao M, Liu Z, Ding C, Zhang L, Zhou W, Ma J, Liu H, Li L J, Luo Z and Huang S 2023 Nat. Nanotechnol. 18 448
[8] Fu J H, Min J, Chang C K, Tseng C C, Wang Q, Sugisaki H, Li C, Chang Y M, Alnami I, Syong W R, Lin C, Fang F, Zhao L, Lo T H, Lai C S, Chiu W S, Jian Z S, Chang W H, Lu Y J, Shih K, Li L J, Wan Y, Shi Y and Tung V 2023 Nat. Nanotechnol. 18 1289
[9] Liu Y, Liu S, Wang Z, Li B, Watanabe K, Taniguchi T, Yoo W J and Hone J 2022 Nat. Electron. 5 579
[10] Daus A, Vaziri S, Chen V, Köroǧlu cC, Grady R W, Bailey C S, Lee H R, Schauble K, Brenner K and Pop E 2021 Nat. Electron. 4 495
[11] Montblanch A R P, Barbone M, Aharonovich I, Atatüre M and Ferrari A C 2023 Nat. Nanotechnol. 18 555
[12] Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H and Zhang Y 2016 Nat. Nanotechnol. 11 593
[13] Doganov R A, O'Farrell E C T, Koenig S P, Yeo Y, Ziletti A, Carvalho A, Campbell D K, Coker D F, Watanabe K, Taniguchi T, Neto A H C and Özyilmaz B 2015 Nat. Commun. 6 6647
[14] Island J O, Steele G A, van der Zant H S and Castellanos-Gomez A 2015 2D Mater. 2 011002
[15] Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J and Hersam M C 2014 Nano Lett. 14 6964
[16] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zólyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patané A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K and Cao Y 2017 Nat. Nanotechnol. 12 223
[17] Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F C, Chen Y T and Gao X P A 2015 Nano Lett. 15 3815
[18] Li W B and Giustino F 2020 Phys. Rev. B 101 035201
[19] Kress-Rogers E, Nicholas R J, Portal J C and Chevy A 1982 Solid State Commun. 44 379
[20] Gao A, Lai J, Wang Y, Zhu Z, Zeng J, Yu G, Wang N, Chen W, Cao T, Hu W, Sun D, Chen X, Miao F, Shi Y and Wang X 2019 Nat. Nanotechnol. 14 217
[21] Sui F, Jin M, Zhang Y, Qi R, Wu Y N, Huang R, Yue F and Chu J 2023 Nat. Commun. 14 36
[22] Liao J, Wen W, Wu J, Zhou Y, Hussain S, Hu H, Li J, Liaqat A, Zhu H, Jiao L, Zheng Q and Xie L 2023 ACS Nano 17 6095
[23] Hao S, Yan S, Wang Y, Xu T, Zhang H, Cong X, Li L, Liu X, Cao T, Gao A, Zhang L, Jia L, Long M, Hu W, Wang X, Tan P, Sun L, Cui X, Liang S J and Miao F 2020 Small 16 1905902
[24] Li M, Lin C Y, Yang S H, Chang Y M, Chang J K, Yang F S, Zhong C, Jian W B, Lien C H, Ho C H, Liu H J, Huang R, Li W, Lin Y F and Chu J 2018 Adv. Mater. 30 1803690
[25] Zhang Y, Sun X, Jia K, Yin H, Luo K, Yu J and Wu Z 2021 Nanomaterials 11 3311
[26] Jiang J, Xu L, Qiu C and Peng L M 2023 Nature 616 470
[27] Chen Z, Biscaras J and Shukla A 2015 Nanoscale 7 5981
[28] Lei S, Ge L, Najmaei S, George A, Kappera R, Lou J, Chhowalla M, Yamaguchi H, Gupta G, Vajtai R, Mohite A D and Ajayan P M 2014 ACS Nano 8 1263
[29] Feng W, Zheng W, Cao W and Hu P 2014 Adv. Mater. 26 6587
[30] Li W, Gong X, Yu Z, Ma L, Sun W, Gao S, Körovglu cC, Wang W, Liu L, Li T, Ning H, Fan D, Xu Y, Tu X, Xu T, Sun L, Wang W, Lu J, Ni Z, Li J, Duan X, Wang P, Nie Y, Qiu H, Shi Y, Pop E, Wang J and Wang X 2023 Nature 613 274
[31] Hamer M J, Zultak J, Tyurnina A V, Zólyomi V, Terry D, Barinov A, Garner A, Donoghue J, Rooney A P, Kandyba V, Giampietri A, Graham A, Teutsch N, Xia X, Koperski M, Haigh S J, Fal'ko V I, Gorbachev R V and Wilson N R 2019 ACS Nano 13 2136
[32] Zheng T, Wu Z, Nan H, Yu Y, Zafar A, Yan Z, Lu J and Ni Z 2017 RSC Adv. 7 54964
[33] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[34] Sun Y J, Pang S M and Zhang J 2022 J. Phys. Chem. Lett. 13 3691
[35] Ho P H, Chang Y R, Chu Y C, Li M K, Tsai C A, Wang W H, Ho C H, Chen C W and Chiu P W 2017 ACS Nano 11 7362
[36] Li T, Guo W, Ma L, Li W, Yu Z, Han Z, Gao S, Liu L, Fan D, Wang Z, Yang Y, Lin W, Luo Z, Chen X, Dai N, Tu X, Pan D, Yao Y, Wang P, Nie Y, Wang J, Shi Y and Wang X 2021 Nat. Nanotechnol. 16 1201
[37] Li W and Giustino F 2020 Phys. Rev. B 101 035201
[38] Wasala M, Patil P D, Ghosh S, Alkhaldi R, Weber L, Lei S, Vajtai R, Ajayan P M and Talapatra S 2020 2D Mater. 7 025030
[39] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[40] Yao X and Zhang X 2021 ACS Omega 6 13426
[41] Narin P, All Abbas J M, Kutlu-Narin E, Lisesivdin S B and Ozbay E 2023 Comput. Mater. Sci. 222 112114
[42] Pham K D, Hieu N N, Ilyasov V V, Phuc H V, Hoi B D, Feddi E, Thuan N V and Nguyen C V 2018 Superlattices Microstruct. 122 570
[1] Field induced Chern insulating states in twisted monolayer–bilayer graphene
Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Chin. Phys. B, 2024, 33(6): 067301.
[2] Effect of strain on structure and electronic properties of monolayer C4N4
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹). Chin. Phys. B, 2024, 33(5): 057302.
[3] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
[4] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[5] Electronic property and topological phase transition in a graphene/CoBr2 heterostructure
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(2): 027901.
[6] Corrigendum to “Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world”
Zhi-Yuan Li(李志远) and Jianfeng Chen(陈剑锋). Chin. Phys. B, 2024, 33(2): 029901.
[7] Progress on two-dimensional ferrovalley materials
Ping Li(李平), Bang Liu(刘邦), Shuai Chen(陈帅), Wei-Xi Zhang(张蔚曦), and Zhi-Xin Guo(郭志新). Chin. Phys. B, 2024, 33(1): 017505.
[8] InSe-Te van der Waals heterostructures for current rectification and photodetection
Hao Wang(王昊), Guo-Yu Xian(冼国裕), Li Liu(刘丽), Xuan-Ye Liu(刘轩冶), Hui Guo(郭辉), Li-Hong Bao(鲍丽宏), Hai-Tao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(8): 087303.
[9] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[10] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[11] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[12] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[13] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[14] Magnetic and magnetotransport properties of layered TaCoTe2 single crystals
Ming Mei(梅明), Zheng Chen(陈正), Yong Nie(聂勇), Yuanyuan Wang(王园园), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2023, 32(12): 127303.
[15] Recent progress on two-dimensional ferroelectrics: Material systems and device applications
Zhiwei Fan(范芷薇), Jingyuan Qu(渠靖媛), Tao Wang(王涛), Yan Wen(温滟), Ziwen An(安子文), Qitao Jiang(姜琦涛), Wuhong Xue(薛武红), Peng Zhou(周鹏), and Xiaohong Xu(许小红). Chin. Phys. B, 2023, 32(12): 128508.
No Suggested Reading articles found!