|
|
Improving the electrical performances of InSe transistors by interface engineering |
Tianjun Cao(曹天俊)1, Song Hao(郝松)2,†, Chenchen Wu(吴晨晨)1, Chen Pan(潘晨)2, Yudi Dai(戴玉頔)1, Bin Cheng(程斌)2, Shi-Jun Liang(梁世军)1,‡, and Feng Miao(缪峰)1,§ |
1 Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 2 Institute of Interdisciplinary Physical Sciences, School of Physics, Nanjing University of Science and Technology, Nanjing 210014, China |
|
|
Abstract InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance. However, the efficacy of the InSe transistor in meeting application requirements is hindered due to its sensitivity to interfaces. In this study, we have achieved notable enhancement in the electrical performance of InSe transistors through interface engineering. We engineered an InSe/h-BN heterostructure, effectively suppressing dielectric layer-induced scattering. Additionally, we successfully established excellent metal—semiconductor contacts using graphene ribbons as a buffer layer. Through a methodical approach to interface engineering, our graphene/InSe/h-BN transistor demonstrates impressive on-state current, field-effect mobility, and on/off ratio at room temperature, reaching values as high as 1.1 mA/μm, 904 cm2·V-1·s-1, and >106, respectively. Theoretical computations corroborate that the graphene/InSe heterostructure shows significant interlayer charge transfer and weak interlayer interaction, contributing to the enhanced performance of InSe transistors. This research offers a comprehensive strategy to elevate the electrical performance of InSe transistors, paving the way for their utilization in future electronic applications.
|
Received: 12 December 2023
Revised: 30 January 2024
Accepted manuscript online: 01 February 2024
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.40.Ns
|
(Metal-nonmetal contacts)
|
|
Fund: Song Hao thanks the support of the National Natural Science Foundation of China (Grant No. 62204030). This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 62122036, 62034004, 61921005, 61974176, and 12074176) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB44000000) |
Corresponding Authors:
Song Hao, Shi-Jun Liang, Feng Miao
E-mail: hao@nju.edu.cn;sjliang@nju.edu.cn;miao@nju.edu.cn
|
Cite this article:
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰) Improving the electrical performances of InSe transistors by interface engineering 2024 Chin. Phys. B 33 047302
|
[1] Zhou J, Zhu C, Zhou Y, Dong J, Li P, Zhang Z, Wang Z, Lin Y C, Shi J, Zhang R, Zheng Y, Yu H, Tang B, Liu F, Wang L, Liu L, Liu G B, Hu W, Gao Y, Yang H, Gao W, Lu L, Wang Y, Suenaga K, Liu G, Ding F, Yao Y and Liu Z 2023 Nat. Mater. 22 450 [2] Chang C, Chen W, Chen Y, Chen Y, Chen Y, Ding F, Fan C, Fan H J, Fan Z and Gong C 2021 Acta Phys. Chim. Sin. 37 2108017 [3] Shin J, Kim H, Sundaram S, Jeong J, Park B I, Chang C S, Choi J, Kim T, Saravanapavanantham M, Lu K, Kim S, Suh J M, Kim K S, Song M K, Liu Y, Qiao K, Kim J H, Kim Y, Kang J H, Kim J, Lee D, Lee J, Kim J S, Lee H E, Yeon H, Kum H S, Bae S H, Bulovic V, Yu K J, Lee K, Chung K, Hong Y J, Ougazzaden A and Kim J 2023 Nature 614 81 [4] Lu G, Yu K, Wen Z and Chen J 2013 Nanoscale 5 1353 [5] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H and Lanzara A 2007 Nat. Mater. 6 770 [6] Zhou Z, Hou F, Huang X, Wang G, Fu Z, Liu W, Yuan G, Xi X, Xu J, Lin J and Gao L 2023 Nature 621 499 [7] Zhang K, She Y, Cai X, Zhao M, Liu Z, Ding C, Zhang L, Zhou W, Ma J, Liu H, Li L J, Luo Z and Huang S 2023 Nat. Nanotechnol. 18 448 [8] Fu J H, Min J, Chang C K, Tseng C C, Wang Q, Sugisaki H, Li C, Chang Y M, Alnami I, Syong W R, Lin C, Fang F, Zhao L, Lo T H, Lai C S, Chiu W S, Jian Z S, Chang W H, Lu Y J, Shih K, Li L J, Wan Y, Shi Y and Tung V 2023 Nat. Nanotechnol. 18 1289 [9] Liu Y, Liu S, Wang Z, Li B, Watanabe K, Taniguchi T, Yoo W J and Hone J 2022 Nat. Electron. 5 579 [10] Daus A, Vaziri S, Chen V, Köroǧlu cC, Grady R W, Bailey C S, Lee H R, Schauble K, Brenner K and Pop E 2021 Nat. Electron. 4 495 [11] Montblanch A R P, Barbone M, Aharonovich I, Atatüre M and Ferrari A C 2023 Nat. Nanotechnol. 18 555 [12] Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H and Zhang Y 2016 Nat. Nanotechnol. 11 593 [13] Doganov R A, O'Farrell E C T, Koenig S P, Yeo Y, Ziletti A, Carvalho A, Campbell D K, Coker D F, Watanabe K, Taniguchi T, Neto A H C and Özyilmaz B 2015 Nat. Commun. 6 6647 [14] Island J O, Steele G A, van der Zant H S and Castellanos-Gomez A 2015 2D Mater. 2 011002 [15] Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J and Hersam M C 2014 Nano Lett. 14 6964 [16] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zólyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patané A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K and Cao Y 2017 Nat. Nanotechnol. 12 223 [17] Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F C, Chen Y T and Gao X P A 2015 Nano Lett. 15 3815 [18] Li W B and Giustino F 2020 Phys. Rev. B 101 035201 [19] Kress-Rogers E, Nicholas R J, Portal J C and Chevy A 1982 Solid State Commun. 44 379 [20] Gao A, Lai J, Wang Y, Zhu Z, Zeng J, Yu G, Wang N, Chen W, Cao T, Hu W, Sun D, Chen X, Miao F, Shi Y and Wang X 2019 Nat. Nanotechnol. 14 217 [21] Sui F, Jin M, Zhang Y, Qi R, Wu Y N, Huang R, Yue F and Chu J 2023 Nat. Commun. 14 36 [22] Liao J, Wen W, Wu J, Zhou Y, Hussain S, Hu H, Li J, Liaqat A, Zhu H, Jiao L, Zheng Q and Xie L 2023 ACS Nano 17 6095 [23] Hao S, Yan S, Wang Y, Xu T, Zhang H, Cong X, Li L, Liu X, Cao T, Gao A, Zhang L, Jia L, Long M, Hu W, Wang X, Tan P, Sun L, Cui X, Liang S J and Miao F 2020 Small 16 1905902 [24] Li M, Lin C Y, Yang S H, Chang Y M, Chang J K, Yang F S, Zhong C, Jian W B, Lien C H, Ho C H, Liu H J, Huang R, Li W, Lin Y F and Chu J 2018 Adv. Mater. 30 1803690 [25] Zhang Y, Sun X, Jia K, Yin H, Luo K, Yu J and Wu Z 2021 Nanomaterials 11 3311 [26] Jiang J, Xu L, Qiu C and Peng L M 2023 Nature 616 470 [27] Chen Z, Biscaras J and Shukla A 2015 Nanoscale 7 5981 [28] Lei S, Ge L, Najmaei S, George A, Kappera R, Lou J, Chhowalla M, Yamaguchi H, Gupta G, Vajtai R, Mohite A D and Ajayan P M 2014 ACS Nano 8 1263 [29] Feng W, Zheng W, Cao W and Hu P 2014 Adv. Mater. 26 6587 [30] Li W, Gong X, Yu Z, Ma L, Sun W, Gao S, Körovglu cC, Wang W, Liu L, Li T, Ning H, Fan D, Xu Y, Tu X, Xu T, Sun L, Wang W, Lu J, Ni Z, Li J, Duan X, Wang P, Nie Y, Qiu H, Shi Y, Pop E, Wang J and Wang X 2023 Nature 613 274 [31] Hamer M J, Zultak J, Tyurnina A V, Zólyomi V, Terry D, Barinov A, Garner A, Donoghue J, Rooney A P, Kandyba V, Giampietri A, Graham A, Teutsch N, Xia X, Koperski M, Haigh S J, Fal'ko V I, Gorbachev R V and Wilson N R 2019 ACS Nano 13 2136 [32] Zheng T, Wu Z, Nan H, Yu Y, Zafar A, Yan Z, Lu J and Ni Z 2017 RSC Adv. 7 54964 [33] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722 [34] Sun Y J, Pang S M and Zhang J 2022 J. Phys. Chem. Lett. 13 3691 [35] Ho P H, Chang Y R, Chu Y C, Li M K, Tsai C A, Wang W H, Ho C H, Chen C W and Chiu P W 2017 ACS Nano 11 7362 [36] Li T, Guo W, Ma L, Li W, Yu Z, Han Z, Gao S, Liu L, Fan D, Wang Z, Yang Y, Lin W, Luo Z, Chen X, Dai N, Tu X, Pan D, Yao Y, Wang P, Nie Y, Wang J, Shi Y and Wang X 2021 Nat. Nanotechnol. 16 1201 [37] Li W and Giustino F 2020 Phys. Rev. B 101 035201 [38] Wasala M, Patil P D, Ghosh S, Alkhaldi R, Weber L, Lei S, Vajtai R, Ajayan P M and Talapatra S 2020 2D Mater. 7 025030 [39] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [40] Yao X and Zhang X 2021 ACS Omega 6 13426 [41] Narin P, All Abbas J M, Kutlu-Narin E, Lisesivdin S B and Ozbay E 2023 Comput. Mater. Sci. 222 112114 [42] Pham K D, Hieu N N, Ilyasov V V, Phuc H V, Hoi B D, Feddi E, Thuan N V and Nguyen C V 2018 Superlattices Microstruct. 122 570 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|