INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Epitaxial growth of ultrathin gallium films on Cd(0001) |
Zuo Li(李佐)1,2, Mingxia Shi(石明霞)1, Gang Yao(姚钢)1, Minlong Tao(陶敏龙)1, and Junzhong Wang(王俊忠)1,† |
1 School of Physical Science and Technology, Southwest University, Chongqing 400715, China; 2 School of Science, Guizhou University of Engineering Science, Bijie 551700, China |
|
|
Abstract Growth and electronic properties of ultrathin Ga films on Cd(0001) are investigated by low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. It is found that Ga films exhibit the epitaxial growth with the pseudomorphic 1×1 lattice. The Ga islands deposited at 100 K show a ramified shape due to the suppressed edge diffusion and corner crossing. Furthermore, the majority of Ga islands reveal flat tops and a preferred height of three atomic layers, indicating the electronic growth at low temperature. Annealing to room temperature leads to not only the growth mode transition from electronic growth to conventional Stranski—Krastanov growth, but also the shape transition from ramified islands to smooth compact islands. Scanning tunneling spectroscopy (STS) measurements reveal that the Ga monolayer exhibits metallic behavior. DFT calculations indicate that all the interfacial Ga atoms occupy the energetically favorable hcp-hollow sites of the substrate. The charge density difference analysis demonstrates that the charge transfer from the Cd substrate to the Ga atoms is negligible, and there is weak interaction between Ga atoms and the Cd substrate. These results shall shed important light on fabrication of ultrathin Ga films on metal substrates with novel physical properties.
|
Received: 18 July 2023
Revised: 17 September 2023
Accepted manuscript online: 20 September 2023
|
PACS:
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
82.20.Wt
|
(Computational modeling; simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874304 and 11574253). |
Corresponding Authors:
Junzhong Wang
E-mail: jzwangcn@swu.edu.cn
|
Cite this article:
Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚钢), Minlong Tao(陶敏龙), and Junzhong Wang(王俊忠) Epitaxial growth of ultrathin gallium films on Cd(0001) 2024 Chin. Phys. B 33 018101
|
[1] Venables J A, Spiller G D T and Hanbucken M 1984 Rep. Prog. Phys. 47 399 [2] Brune H 1998 Surf. Sci. Rep. 31 125 [3] Arthur J R 2002 Surf. Sci. 500 189 [4] Hahn E, Kampshoff E, Wälchli N and Kern K 1995 Phys. Rev. Lett. 74 1803 [5] Pratzer M, Elmers H J and Getzlaff M 2003 Phys. Rev. B 67 153405 [6] Moskalyk R R 2003 Miner. Eng. 16 921 [7] Northrup J E and Neugebauer J 2000 Phys. Rev. B 61 9932 [8] Zhang H M, Sun Y, Li W, Peng J P, Song C L, Xing Y, Zhang Q, Guan J, Li Z, Zhao Y, Ji S, Wang L, He K, Chen X, Gu L, Ling L, Tian M, Li L, Xie X C, Liu J, Yang H, Xue Q K, Wang J and Ma X 2015 Phys. Rev. Lett. 114 107003 [9] Xing Y, Zhang H M, Fu H L, Liu H, Sun Y, Peng J P, Wang F, Lin X, Ma X C, Xue Q K, Wang J and Xie X C 2015 Science 350 542 [10] Kochat V, Samanta A, Zhang Y, Bhowmick S, Manimunda P, Asif S A S, Stender A S, Vajtai R, Singh A K, Tiwary C S and Ajayan P M 2018 Sci. Adv. 4 1701373 [11] Tao M L, Tu Y B, Sun K, Wang Y L, Xie Z B, Liu L, Shi M X and Wang J Z 2018 2D Mater. 5 035009 [12] Badalov S V, Yagmurcukardes M, Peeters F M and Sahin H 2018 J. Phys. Chem. C 122 28302 [13] Steenbergen K G and Gaston N 2019 Chem. Commun. 55 8872 [14] Li Y, Zhang J, Yin F, Wang Y, Feng H, Zhou S and Du Y 2019 Nanoscale 11 17201 [15] Nakhaee M, Yagmurcukardes M, Ketabi S A and Peeters F M 2019 Phys. Chem. Chem. Phys. 21 15798 [16] Briggs N, Bersch B, Wang Y, Jiang J, Koch R J, Nayir N, Wang K, Kolmer M, Ko W, De La Fuente Duran A, Subramanian S, Dong C, Shallenberger J, Fu M, Zou Q, Chuang Y W, Gai Z, Li A P, Bostwick A, Jozwiak C, Chang C Z, Rotenberg E, Zhu J, van Duin A C T, Crespi V and Robinson J A 2020 Nat. Mater. 19 637 [17] Petrov M, Bekaert J and Milošević M V 2021 2D Mater. 8 035056 [18] Lambie S, Steenbergen K G and Gaston N 2021 Nanoscale Adv. 3 499 [19] Wundrack S, Momeni D, Dempwolf W, Schmidt N, Pierz K, Michaliszyn L, Spende H, Schmidt A, Schumacher H W, Stosch R and Bakin A 2021 Phys. Rev. Mater. 5 024006 [20] Kutana A, Altalhi T, Ruan Q, Zhang J J, Penev E S and Yakobson B I 2022 Nanoscale Adv. 4 1408 [21] Tao M L, Xiao H F, Sun K, Tu Y B, Yuan H K, Xiong Z H, Wang J Z and Xue Q K 2017 Phys. Rev. B 96 125410 [22] Lineberger W C 1976 IEEE Trans. Nucl. Sci. 23 934 [23] Nečas D and Klapetek P 2012 Cent. Eur. J. Phys. 10 181 [24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [25] Hamann D R 2013 Phys. Rev. B 88 085117 [26] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Co-coccioni M, Dabo I, Dal Corso A, De Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.:Condens. Matter 21 395502 [27] Marzari N, Vanderbilt D, De Vita A and Payne M C 1999 Phys. Rev. Lett. 82 3296 [28] Gavioli L, Kimberlin K R, Tringides M C, Wendelken J F and Zhang Z Y 1999 Phys, Rev. Lett. 82 129 [29] Su W B, Chang S H, Jian W B, Chang C S, Chen L J and Tsong T T 2001 Phys. Rev. Lett. 86 5116 [30] Yu H, Jiang C S, Wang X D, Niu Q, Shih C K, Ebert P, White J M, White J M, Shih C K, White J M, Niu Q, Shih C K and Zhang Z Y 2002 Phys. Rev. Lett. 88 016102 [31] Zhang Z Y, Niu Q and Shih C K 1998 Phys. Rev. Lett. 80 5381 [32] Bosio L, Curien H, Dupont M and Rimsky A 1972 Acta Crystallogr. Sect. B 28 1974 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|