Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 066602    DOI: 10.1088/1674-1056/accd4b
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Xiamen University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Xiamen University Prev   Next  

Hydrogen diffusion in C1' phase clathrate hydrate

Zixuan Song(宋姿璇)1, Ziyue Zhou(周子岳)1, Yanwen Lin(林演文)1, Qiao Shi(石桥)1, Yongchao Hao(郝勇超)1, Yuequn Fu(付越群)2, Zhisen Zhang(张志森)1,†, and Jianyang Wu(吴建洋)1,3,‡
1 Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China;
2 PoreLab, the Njord Centre, Department of Physics, University of Oslo, Oslo 0313, Norway;
3 NTNU Nanomechanical Laboratory, Norwegian University of Science and Technology(NTNU), Trondheim 7491, Norway
Abstract  Recently, a new phase C$_{1}'$ H$_{2}$ hydrate was experimentally identified. In this work, the diffusive behaviors of H$_{2}$ in C$_{1}'$ phase clathrate hydrate are explored using classic molecular dynamics (MD) simulations. It reveals that the cage occupancy by H$_{2}$ molecule negligibly influences the C$_{1}'$ phase clathrate structure but greatly dictates the diffusion coefficient of H$_{2}$ molecule. Due to the small cage size and small windows connecting the neighboring cages in C$_{1}'$ phase clathrate, non-occupancy of the neighboring cages is demanded to enable the diffusion of H$_{2}$ molecule that is primarily dominated by hopping mechanism. Moreover, the analysis of diffusive free energy landscape reveals lower energy barrier of H$_{2}$ molecule in C$_{1}'$ phase clathrate hydrate than that of other gases in conventional clathrate hydrates, and that H$_{2}$ molecule travels through the windows between neighboring cages with preferential molecular orientation. This study provides critical physical insights into the diffusion behaviors of H$_{2}$ in the C$_{1}'$ phase clathrate hydrate, and implies that the C$_{1}'$ clathrate hydrate is a promising solid structure for the next-generation H$_{2}$ storage.
Keywords:  clathrate hydrate      hydrogen storage      diffusion      molecular dynamics  
Received:  16 February 2023      Revised:  28 March 2023      Accepted manuscript online:  16 April 2023
PACS:  66.30.Pa (Diffusion in nanoscale solids)  
  88.30.R- (Hydrogen storage)  
  91.50.Hc (Gas and hydrate systems)  
  47.11.Mn (Molecular dynamics methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12172314, 11772278, and 11904300), the Jiangxi Provincial Outstanding Young Talents Program (Grant No. 20192BCBL23029), the Fundamental Research Funds for the Central Universities (Xiamen University: Grant Nos. 20720210025 and 20720220023), the Research Council of Norway (Grant No. 262644), and the 111 project (Grant No. B16029).
Corresponding Authors:  Zhisen Zhang, Jianyang Wu     E-mail:  zhangzs@xmu.edu.cn;jianyang@xmu.edu.cn

Cite this article: 

Zixuan Song(宋姿璇), Ziyue Zhou(周子岳), Yanwen Lin(林演文), Qiao Shi(石桥), Yongchao Hao(郝勇超),Yuequn Fu(付越群), Zhisen Zhang(张志森), and Jianyang Wu(吴建洋) Hydrogen diffusion in C1' phase clathrate hydrate 2023 Chin. Phys. B 32 066602

[1] Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, Marsh K N and Sloan E D2004 Science 306 469
[2] Veluswamy H P, Kumar R and Linga P2014 Appl. Energy 122 112
[3] von Helmolt R and Eberle U2007 J. Power Sources 165 833
[4] Schlapbach L and Zuttel A2001 Nature 414 353
[5] Zuttel A2004 Naturwissenschaften 91 157
[6] Abascal J L, Sanz E, Garcia F R and Vega C2005 J. Chem. Phys. 122 234511
[7] Nijkamp M G, Raaymakers J E M J, van Dillen A J and de Jong K P2001 Appl. Phys. A 72 619
[8] Darkrim L F, Malbrunot P and Tartaglia G P2002 Int. J. Hydrog. Energy 27 193
[9] Seayad A M and Antonelli D M2004 Adv. Mater. 16 765
[10] Snurr R Q, Hupp J T and Nguyen S T2004 AIChE J. 50 1090
[11] Rowsell J L and Yaghi O M2005 Angew. Chem. Int. Ed. 44 4670
[12] Dinca M, Dailly A, Liu Y, Brown C M, Neumann D A and Long J R2006 J. Am. Chem. Soc. 128 16876
[13] Ströbel R, Garche J, Moseley P T, Jörissen L and Wolf G2006 J. Power Sources 159 781
[14] Collins D J and Zhou H C2007 J. Mater. Chem. 17 3154
[15] Pan H Z, Wang Y L, He K H, Wei M Z, Ouyang Y and Chen L2013 Chin. Phys. B 22 067101
[16] Bhihia M, Lakhala M, Labrimb H, Benyoussefa A, Kenza A E, Mounkachic O and Hlile E K2012 Chin. Phys. B 21 097501
[17] Wang L F and Yang R T2008 Energy Environ. Sci. 1 268
[18] Thomas K M2009 Dalton Trans. 9 1487
[19] Züttel A2003 Mater. Today 6 24
[20] Jinzhe L, Lider A M and Kudiiarov V N2019 Chin. Phys. B 28 98801
[21] Koh C A, Sloan E D, Sum A K and Wu D T2011 Annu. Rev. Chem. Biomol. Eng. 2 237
[22] Ning F L, Yu Y B, Kjelstrup S, Vlugt T J H and Glavatskiy K2012 Energy Environ. Sci. 5 6779
[23] Hassanpouryouzband A, Joonaki E, Vasheghani F M, Takeya S, Ruppel C, Yang J, English N J, Schicks J M, Edlmann K, Mehrabian H, Aman Z M and Tohidi B2020 Chem. Soc. Rev. 49 5225
[24] Hammerschmidt E G2002 Ind. Eng. Chem. 26 851
[25] Uchida T, Ohmura R and Hori A 2008 J. Phys. Chem. C 112 4719
[26] Liu Z B, Dong S L and Lin W2008 Chin. Phys. Lett. 25 2680
[27] Torres T A, Kroon M C, Peters C J, Moudrakovski I L, Ratcliffe C I, Alavi S and Ripmeester J A2014 J. Chem. Phys. 140 214703
[28] Xu K, Lin Y W, Li T, Fu Y Q, Zhang Z S and Wua J Y2022 J. Mol. Liq. 347 118391
[29] Lenz A and Ojamae L2011 J. Phys. Chem. A 115 6169
[30] Shi Q, Cao P Q, Han Z D, Ning F L, Gong H, Xin Y, Zhang Z S and Wu J Y2018 Cryst. Growth Des. 18 6729
[31] Guo P, Qiu Y L, Li L L, Luo Q, Zhao J F and Pan Y K2018 Chin. Phys. B 27 43103
[32] Dyadin Y A, Larionov E G, Manakov A Y, Zhurko F V, Aladko E Y, Mikina T V and Komarov V Y1999 Mendeleev Commun. 9 209
[33] Dyadin Y A, Aladko E Y, Manakov A Y, Zhurko F V, Mikina T V, Komarov V Y and Grachev E V1999 J. Struct. Chem. 40 790
[34] Mao W L, Mao H K, Goncharov A F, Struzhkin V V, Guo Q, Hu J, Shu J, Hemley R J, Somayazulu M and Zhao Y2002 Science 297 2247
[35] Mao W L and Mao H K2004 Proc. Natl. Acad. Sci. USA 101 708
[36] Efimchenko V S, Kuzovnikov M A, Fedotov V K, Sakharov M K, Simonov S V and Tkacz M2011 J. Alloys Compd. 509 S860
[37] Strobel T A, Ganesh P, Somayazulu M, Kent P R and Hemley R J2011 Phys. Rev. Lett. 107 255503
[38] Kamb B1964 Acta Crystallogr. 17 1437
[39] Machida S, Hirai H, Kawamura T, Yamamoto Y and Yagi T2010 J. Phys. Chem. Solids 71 1324
[40] Fortes A D, Wood I G, Alfredsson M, Vocadlo L and Knight K S2005 J. Appl. Crystallogr. 38 612
[41] Wang Y, Glazyrin K, Roizen V, Oganov A R, Chernyshov I, Zhang X, Greenberg E, Prakapenka V B, Yang X, Jiang S Q and Goncharov A F2020 Phys. Rev. Lett. 125 255702
[42] Faizullin M Z, Vinogradov A V and Koverda V P2014 High Temp. 52 830
[43] Strauss H L, Chen Z and Loong C K1994 J. Chem. Phys. 101 7177
[44] Okuchi T, Moudrakovski I L and Ripmeester J A2007 Appl. Phys. Lett. 91 171903
[45] Okuchi T 2012 J. Phys. Chem. C 116 2179
[46] Iwai Y and Hirata M2012 Mol. Simul. 38 333
[47] Nagai Y, Yoshioka H, Ota M, Sato Y, Inomata H and Smith R L2008 AIChE J. 54 3007
[48] Harada A, Arman Y and Miura S2019 J. Mol. Liq. 292 111316
[49] Zhang Y, Zhang R, Lai J Q and Li H2019 Acta Phys. Sin. 68 224702 (in Chinese)
[50] Shao Y F, Meng F S, Li J H and Zhao X2019 Acta Phys. Sin. 68 216201 (in Chinese)
[51] Wang Y T, Zeng X G and Yang X2019 Acta Phys. Sin. 68 246102 (in Chinese)
[52] Zhang C B and Zhou X2020 Chin. Phys. B 29 108706
[53] Jiang W R, Wang R, Ren X G, Zhang Z Y, Li D H and Wang Z G2020 Chin. Phys. B 29 103101
[54] Tang Y M, Yao Y F and Wei G H2020 Chin. Phys. B 29 108710
[55] Zhang Z X, Zhao X Y, Li Y, Cui H, Luo Z C, Xu W C and Luo A P2020 Chin. Phys. B 29 104208
[56] Wang L Y, Xu X P, Li Z G and Qian T Z2020 Chin. Phys. B 29 090501
[57] Li T, Li J W, Pang C L, An H L, Geng Y Z and Wang J Q2020 Chin. Phys. B 29 098701
[58] Wang J L, Dang W Q, Liu D P and Guo Z C2020 Chin. Phys. B 29 093101
[59] Hui T, Gui T X, Ping J Y, Xiang L Q and Hua L W2019 Acta Phys. Sin. 68 227701 (in Chinese)
[60] Qin F B, Qing H, Jun W, Jie Q M and Chao C J2019 Acta Phys. Sin. 68 240201 (in Chinese)
[61] Zhang H, Huang Y, Shi W Z, Zhou X H and Chen X S2019 Acta Phys. Sin. 68 207302 (in Chinese)
[62] Kuo W L and Li D F2019 Acta Phys. Sin. 68 193101 (in Chinese)
[63] Adams D J1981 Nature 293 447
[64] Hess B, Bekker H, Berendsen H J C and Fraaije J G E M1997 J. Comput. Chem. 18 1463
[65] Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W and Kollman P A2002 J. Am. Chem. Soc. 117 5179
[66] Alavi S and Ripmeester J A2017 Mol. Simul. 43 808
[67] Tian L L, Duan H M, Luo J M, Cheng Y H and Shi L2021 ACS Appl. Nano Mater. 4 9440
[68] Hess B, Kutzner C, van der Spoel D and Lindahl E2008 J. Chem. Theory Comput. 4 435
[69] Quigley D and Rodger P M2008 J. Chem. Phys. 128 154518
[70] Laio A, Rodriguez-Fortea A, Gervasio F L, Ceccarelli M and Parrinello M 2005 J. Phys. Chem. B 109 6714
[71] Soper A K2000 Chem. Phys. 258 121
[72] Cao H, English N J and MacElroy J M2013 J. Chem. Phys. 138 094507
[73] Metzler R, Jeon J H, Cherstvy A G and Barkai E2014 Phys. Chem. Chem. Phys. 16 24128
[74] Ivanovskis G, Norman G E and Usmanova D R2012 Dokl. Phys. 57 427
[75] Chen Q, Moore J D, Liu Y C, Roussel T J, Wang Q, Wu T and Gubbins K E2010 J. Chem. Phys. 133 094501
[76] Alavi S, Udachin K and Ripmeester J A2010 Chemistry 16 1017
[77] Okuchi T, Takigawa M, Shu J F, Mao H K, Hemley R J and Yagi T2007 Phys. Rev. B 75 144104
[78] Strauss H L, Chen Z and Loong C K1994 J. Chem. Phys 101 7177
[79] Prisk T R, Hanna S and Azuah R T2020 J. Low Temp. Phys. 201 451
[80] Zhang Z, Wu T, Wang Q, Pan H and Tang R2014 J. Chem. Phys. 140 034706
[81] Kuhs W F, Staykova D K and Salamatin A N 2006 J. Phys. Chem. B 110 13283
[82] Genov G, Kuhs W F, Staykova D K, Goreshnik E and Salamatin A N2004 Am. Mineral. 89 1228
[83] Salamatin A N, Lipenkov V Y, Hondoh T and Ikeda T 1999 J. Phys. Chem. C 29 191
[84] Hjertenaes E, Trinh T T and Koch H2016 Phys. Chem. Chem. Phys. 18 17831
[85] Alavi S and Ripmeester J A2007 Angew. Chem. Int. Ed. 46 6102
[86] Frankcombe T J and Kroes G J 2007 J. Phys. Chem. C 111 13044
[1] Periodic electron oscillation in coupled two-dimensional lattices
Yan-Yan Lu(陆艳艳), Chao Wang(王超), Jin-Yi Jiang(将金益), Jie Liu(刘洁), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2023, 32(7): 070306.
[2] Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence
Lei Huang(黄磊), Kai Ren(任凯), Huanping Zhang(张焕萍), and Huasong Qin(覃华松). Chin. Phys. B, 2023, 32(7): 076103.
[3] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[4] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[5] Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene
Meng-Meng Zhang(张蒙蒙), Feng Zhang(张凤), Qiang Wu(吴强), Xin Huang(黄欣), Wei Yan(闫巍),Chun-Mei Zhao(赵春梅), Wei Chen(陈伟), Zhi-Hong Yang(杨志红),Yun-Hui Wang(王允辉), and Ting-Ting Wu(武婷婷). Chin. Phys. B, 2023, 32(6): 066803.
[6] Strain effects on Li+ diffusion in solid electrolyte interphases: A molecular dynamics study
Xiang Ji(姬祥) and Junqian Zhang(张俊乾). Chin. Phys. B, 2023, 32(6): 066601.
[7] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[8] Synthesis, magnetic and electromagnetic wave absorption properties of planar anisotrop Y2Co17@SiO2 rare earth soft magnetic composites
Liang Qiao(乔亮), Cheng-Fa Tu(涂成发), Wei Wu(吴伟), Wen-Biao Wang(王文彪), Sheng-Yu Yang(杨晟宇), Sun Zhe(孙哲), Peng Wu(吴鹏), Jin-Bo Yang(杨金波), Chang-Sheng Wang(王常生), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2023, 32(5): 054202.
[9] Study of metal-ceramic WC/Cu nano-wear behavior and strengthening mechanism
Min Zheng(郑敏), Jie Chen(陈杰), Zong-Xiao Zhu(朱宗孝), Ding-Feng Qu(曲定峰), Wei-Hua Chen(陈卫华), Zhuo Wu(吴卓), Lin-Jun Wang(王林军), and Xue-Zhong Ma(马学忠). Chin. Phys. B, 2023, 32(4): 046801.
[10] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[11] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[12] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[13] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[14] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[15] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
No Suggested Reading articles found!