Special Issue:
SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Xiamen University
|
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Xiamen University |
Prev
Next
|
|
|
Hydrogen diffusion in C1' phase clathrate hydrate |
Zixuan Song(宋姿璇)1, Ziyue Zhou(周子岳)1, Yanwen Lin(林演文)1, Qiao Shi(石桥)1, Yongchao Hao(郝勇超)1, Yuequn Fu(付越群)2, Zhisen Zhang(张志森)1,†, and Jianyang Wu(吴建洋)1,3,‡ |
1 Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China; 2 PoreLab, the Njord Centre, Department of Physics, University of Oslo, Oslo 0313, Norway; 3 NTNU Nanomechanical Laboratory, Norwegian University of Science and Technology(NTNU), Trondheim 7491, Norway |
|
|
Abstract Recently, a new phase C$_{1}'$ H$_{2}$ hydrate was experimentally identified. In this work, the diffusive behaviors of H$_{2}$ in C$_{1}'$ phase clathrate hydrate are explored using classic molecular dynamics (MD) simulations. It reveals that the cage occupancy by H$_{2}$ molecule negligibly influences the C$_{1}'$ phase clathrate structure but greatly dictates the diffusion coefficient of H$_{2}$ molecule. Due to the small cage size and small windows connecting the neighboring cages in C$_{1}'$ phase clathrate, non-occupancy of the neighboring cages is demanded to enable the diffusion of H$_{2}$ molecule that is primarily dominated by hopping mechanism. Moreover, the analysis of diffusive free energy landscape reveals lower energy barrier of H$_{2}$ molecule in C$_{1}'$ phase clathrate hydrate than that of other gases in conventional clathrate hydrates, and that H$_{2}$ molecule travels through the windows between neighboring cages with preferential molecular orientation. This study provides critical physical insights into the diffusion behaviors of H$_{2}$ in the C$_{1}'$ phase clathrate hydrate, and implies that the C$_{1}'$ clathrate hydrate is a promising solid structure for the next-generation H$_{2}$ storage.
|
Received: 16 February 2023
Revised: 28 March 2023
Accepted manuscript online: 16 April 2023
|
PACS:
|
66.30.Pa
|
(Diffusion in nanoscale solids)
|
|
88.30.R-
|
(Hydrogen storage)
|
|
91.50.Hc
|
(Gas and hydrate systems)
|
|
47.11.Mn
|
(Molecular dynamics methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12172314, 11772278, and 11904300), the Jiangxi Provincial Outstanding Young Talents Program (Grant No. 20192BCBL23029), the Fundamental Research Funds for the Central Universities (Xiamen University: Grant Nos. 20720210025 and 20720220023), the Research Council of Norway (Grant No. 262644), and the 111 project (Grant No. B16029). |
Corresponding Authors:
Zhisen Zhang, Jianyang Wu
E-mail: zhangzs@xmu.edu.cn;jianyang@xmu.edu.cn
|
Cite this article:
Zixuan Song(宋姿璇), Ziyue Zhou(周子岳), Yanwen Lin(林演文), Qiao Shi(石桥), Yongchao Hao(郝勇超),Yuequn Fu(付越群), Zhisen Zhang(张志森), and Jianyang Wu(吴建洋) Hydrogen diffusion in C1' phase clathrate hydrate 2023 Chin. Phys. B 32 066602
|
[1] Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, Marsh K N and Sloan E D2004 Science 306 469 [2] Veluswamy H P, Kumar R and Linga P2014 Appl. Energy 122 112 [3] von Helmolt R and Eberle U2007 J. Power Sources 165 833 [4] Schlapbach L and Zuttel A2001 Nature 414 353 [5] Zuttel A2004 Naturwissenschaften 91 157 [6] Abascal J L, Sanz E, Garcia F R and Vega C2005 J. Chem. Phys. 122 234511 [7] Nijkamp M G, Raaymakers J E M J, van Dillen A J and de Jong K P2001 Appl. Phys. A 72 619 [8] Darkrim L F, Malbrunot P and Tartaglia G P2002 Int. J. Hydrog. Energy 27 193 [9] Seayad A M and Antonelli D M2004 Adv. Mater. 16 765 [10] Snurr R Q, Hupp J T and Nguyen S T2004 AIChE J. 50 1090 [11] Rowsell J L and Yaghi O M2005 Angew. Chem. Int. Ed. 44 4670 [12] Dinca M, Dailly A, Liu Y, Brown C M, Neumann D A and Long J R2006 J. Am. Chem. Soc. 128 16876 [13] Ströbel R, Garche J, Moseley P T, Jörissen L and Wolf G2006 J. Power Sources 159 781 [14] Collins D J and Zhou H C2007 J. Mater. Chem. 17 3154 [15] Pan H Z, Wang Y L, He K H, Wei M Z, Ouyang Y and Chen L2013 Chin. Phys. B 22 067101 [16] Bhihia M, Lakhala M, Labrimb H, Benyoussefa A, Kenza A E, Mounkachic O and Hlile E K2012 Chin. Phys. B 21 097501 [17] Wang L F and Yang R T2008 Energy Environ. Sci. 1 268 [18] Thomas K M2009 Dalton Trans. 9 1487 [19] Züttel A2003 Mater. Today 6 24 [20] Jinzhe L, Lider A M and Kudiiarov V N2019 Chin. Phys. B 28 98801 [21] Koh C A, Sloan E D, Sum A K and Wu D T2011 Annu. Rev. Chem. Biomol. Eng. 2 237 [22] Ning F L, Yu Y B, Kjelstrup S, Vlugt T J H and Glavatskiy K2012 Energy Environ. Sci. 5 6779 [23] Hassanpouryouzband A, Joonaki E, Vasheghani F M, Takeya S, Ruppel C, Yang J, English N J, Schicks J M, Edlmann K, Mehrabian H, Aman Z M and Tohidi B2020 Chem. Soc. Rev. 49 5225 [24] Hammerschmidt E G2002 Ind. Eng. Chem. 26 851 [25] Uchida T, Ohmura R and Hori A 2008 J. Phys. Chem. C 112 4719 [26] Liu Z B, Dong S L and Lin W2008 Chin. Phys. Lett. 25 2680 [27] Torres T A, Kroon M C, Peters C J, Moudrakovski I L, Ratcliffe C I, Alavi S and Ripmeester J A2014 J. Chem. Phys. 140 214703 [28] Xu K, Lin Y W, Li T, Fu Y Q, Zhang Z S and Wua J Y2022 J. Mol. Liq. 347 118391 [29] Lenz A and Ojamae L2011 J. Phys. Chem. A 115 6169 [30] Shi Q, Cao P Q, Han Z D, Ning F L, Gong H, Xin Y, Zhang Z S and Wu J Y2018 Cryst. Growth Des. 18 6729 [31] Guo P, Qiu Y L, Li L L, Luo Q, Zhao J F and Pan Y K2018 Chin. Phys. B 27 43103 [32] Dyadin Y A, Larionov E G, Manakov A Y, Zhurko F V, Aladko E Y, Mikina T V and Komarov V Y1999 Mendeleev Commun. 9 209 [33] Dyadin Y A, Aladko E Y, Manakov A Y, Zhurko F V, Mikina T V, Komarov V Y and Grachev E V1999 J. Struct. Chem. 40 790 [34] Mao W L, Mao H K, Goncharov A F, Struzhkin V V, Guo Q, Hu J, Shu J, Hemley R J, Somayazulu M and Zhao Y2002 Science 297 2247 [35] Mao W L and Mao H K2004 Proc. Natl. Acad. Sci. USA 101 708 [36] Efimchenko V S, Kuzovnikov M A, Fedotov V K, Sakharov M K, Simonov S V and Tkacz M2011 J. Alloys Compd. 509 S860 [37] Strobel T A, Ganesh P, Somayazulu M, Kent P R and Hemley R J2011 Phys. Rev. Lett. 107 255503 [38] Kamb B1964 Acta Crystallogr. 17 1437 [39] Machida S, Hirai H, Kawamura T, Yamamoto Y and Yagi T2010 J. Phys. Chem. Solids 71 1324 [40] Fortes A D, Wood I G, Alfredsson M, Vocadlo L and Knight K S2005 J. Appl. Crystallogr. 38 612 [41] Wang Y, Glazyrin K, Roizen V, Oganov A R, Chernyshov I, Zhang X, Greenberg E, Prakapenka V B, Yang X, Jiang S Q and Goncharov A F2020 Phys. Rev. Lett. 125 255702 [42] Faizullin M Z, Vinogradov A V and Koverda V P2014 High Temp. 52 830 [43] Strauss H L, Chen Z and Loong C K1994 J. Chem. Phys. 101 7177 [44] Okuchi T, Moudrakovski I L and Ripmeester J A2007 Appl. Phys. Lett. 91 171903 [45] Okuchi T 2012 J. Phys. Chem. C 116 2179 [46] Iwai Y and Hirata M2012 Mol. Simul. 38 333 [47] Nagai Y, Yoshioka H, Ota M, Sato Y, Inomata H and Smith R L2008 AIChE J. 54 3007 [48] Harada A, Arman Y and Miura S2019 J. Mol. Liq. 292 111316 [49] Zhang Y, Zhang R, Lai J Q and Li H2019 Acta Phys. Sin. 68 224702 (in Chinese) [50] Shao Y F, Meng F S, Li J H and Zhao X2019 Acta Phys. Sin. 68 216201 (in Chinese) [51] Wang Y T, Zeng X G and Yang X2019 Acta Phys. Sin. 68 246102 (in Chinese) [52] Zhang C B and Zhou X2020 Chin. Phys. B 29 108706 [53] Jiang W R, Wang R, Ren X G, Zhang Z Y, Li D H and Wang Z G2020 Chin. Phys. B 29 103101 [54] Tang Y M, Yao Y F and Wei G H2020 Chin. Phys. B 29 108710 [55] Zhang Z X, Zhao X Y, Li Y, Cui H, Luo Z C, Xu W C and Luo A P2020 Chin. Phys. B 29 104208 [56] Wang L Y, Xu X P, Li Z G and Qian T Z2020 Chin. Phys. B 29 090501 [57] Li T, Li J W, Pang C L, An H L, Geng Y Z and Wang J Q2020 Chin. Phys. B 29 098701 [58] Wang J L, Dang W Q, Liu D P and Guo Z C2020 Chin. Phys. B 29 093101 [59] Hui T, Gui T X, Ping J Y, Xiang L Q and Hua L W2019 Acta Phys. Sin. 68 227701 (in Chinese) [60] Qin F B, Qing H, Jun W, Jie Q M and Chao C J2019 Acta Phys. Sin. 68 240201 (in Chinese) [61] Zhang H, Huang Y, Shi W Z, Zhou X H and Chen X S2019 Acta Phys. Sin. 68 207302 (in Chinese) [62] Kuo W L and Li D F2019 Acta Phys. Sin. 68 193101 (in Chinese) [63] Adams D J1981 Nature 293 447 [64] Hess B, Bekker H, Berendsen H J C and Fraaije J G E M1997 J. Comput. Chem. 18 1463 [65] Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W and Kollman P A2002 J. Am. Chem. Soc. 117 5179 [66] Alavi S and Ripmeester J A2017 Mol. Simul. 43 808 [67] Tian L L, Duan H M, Luo J M, Cheng Y H and Shi L2021 ACS Appl. Nano Mater. 4 9440 [68] Hess B, Kutzner C, van der Spoel D and Lindahl E2008 J. Chem. Theory Comput. 4 435 [69] Quigley D and Rodger P M2008 J. Chem. Phys. 128 154518 [70] Laio A, Rodriguez-Fortea A, Gervasio F L, Ceccarelli M and Parrinello M 2005 J. Phys. Chem. B 109 6714 [71] Soper A K2000 Chem. Phys. 258 121 [72] Cao H, English N J and MacElroy J M2013 J. Chem. Phys. 138 094507 [73] Metzler R, Jeon J H, Cherstvy A G and Barkai E2014 Phys. Chem. Chem. Phys. 16 24128 [74] Ivanovskis G, Norman G E and Usmanova D R2012 Dokl. Phys. 57 427 [75] Chen Q, Moore J D, Liu Y C, Roussel T J, Wang Q, Wu T and Gubbins K E2010 J. Chem. Phys. 133 094501 [76] Alavi S, Udachin K and Ripmeester J A2010 Chemistry 16 1017 [77] Okuchi T, Takigawa M, Shu J F, Mao H K, Hemley R J and Yagi T2007 Phys. Rev. B 75 144104 [78] Strauss H L, Chen Z and Loong C K1994 J. Chem. Phys 101 7177 [79] Prisk T R, Hanna S and Azuah R T2020 J. Low Temp. Phys. 201 451 [80] Zhang Z, Wu T, Wang Q, Pan H and Tang R2014 J. Chem. Phys. 140 034706 [81] Kuhs W F, Staykova D K and Salamatin A N 2006 J. Phys. Chem. B 110 13283 [82] Genov G, Kuhs W F, Staykova D K, Goreshnik E and Salamatin A N2004 Am. Mineral. 89 1228 [83] Salamatin A N, Lipenkov V Y, Hondoh T and Ikeda T 1999 J. Phys. Chem. C 29 191 [84] Hjertenaes E, Trinh T T and Koch H2016 Phys. Chem. Chem. Phys. 18 17831 [85] Alavi S and Ripmeester J A2007 Angew. Chem. Int. Ed. 46 6102 [86] Frankcombe T J and Kroes G J 2007 J. Phys. Chem. C 111 13044 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|