CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Strain effects on Li+ diffusion in solid electrolyte interphases: A molecular dynamics study |
Xiang Ji(姬祥)1 and Junqian Zhang(张俊乾)1,2,† |
1 Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China; 2 Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200444, China |
|
|
Abstract Dilithium ethylene dicarbonate (Li2EDC) and dilithium butylene dicarbonate (Li2BDC) are the common organic compositions of the solid electrolyte interphase (SEI) layers in rechargeable lithium-ion batteries. The Li+ diffusion in the amorphous and ordered phases of Li2EDC and Li2BDC under various strains has been investigated by using molecular dynamics simulations. It is found that different strains lead to diverse changes in Li+ diffusivity. The tensile strain makes the Li+ diffusion coefficients increase in amorphous and ordered Li2EDC or Li2BDC, and the compressive strain makes the Li+ diffusion coefficients decrease in them. The average Li+ coordination number calculation, ion conductivity calculation and the calculation of the residence autocorrelation function in amorphous and ordered Li2EDC or Li2BDC are performed to further analyze the strain effects on Li+ transport in them. The factors influencing Li+ diffusion in amorphous and ordered Li2EDC or Li2BDC under the strain are discussed.
|
Received: 09 May 2022
Revised: 20 September 2022
Accepted manuscript online: 29 September 2022
|
PACS:
|
66.30.-h
|
(Diffusion in solids)
|
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11872236). |
Corresponding Authors:
Junqian Zhang
E-mail: jqzhang2@shu.edu.cn
|
Cite this article:
Xiang Ji(姬祥) and Junqian Zhang(张俊乾) Strain effects on Li+ diffusion in solid electrolyte interphases: A molecular dynamics study 2023 Chin. Phys. B 32 066601
|
[1] Xu Z, Yang J, Li H, Nuli Y and Wang J2019 Mater. Chem. A 7 9432 [2] Ji L, Lin Z, Alcoutlabi M and Zhang X2011 Energy Environ. Sci. 4 2682 [3] Zhang H, Zhao H, Khan M A, Zou W, Xu J, Zhang L and Zhang J2018 J. Mater. Chem. A 6 20564 [4] Ravdel B, Abraham K M, Gitzendanner R, DiCarlo J, Lucht B and Campion C2003 J. Power Sources 119 805 [5] Wang A, Kadam S, Li H, Shi S and Qi Y2018 npj Comput. Mater. 4 1 [6] Peled E and Menkin S2017 J. Electrochem. Soc. 164 A1703 [7] Xu K2010 Energies 3 135 [8] Xu K2014 Chem. Rev. 114 11503 [9] Heiskanen S K, Kim J and Lucht B L2019 Joule 3 2322 [10] Ogumi Z2010 Electrochemistry 78 319 [11] Yamada Y, Iriyama Y, Abe T and Ogumi Z2009 Langmuir 25 12766 [12] Wu H, Jia H, Wang C, Zhang J and Xu W2021 Adv. Energy Mater. 11 2003092 [13] Young B T, Heskett D R, Nguyen C C, Nie M, Woicik J C and Lucht B L2015 ACS Appl. Mater. Interfaces 7 20004 [14] Hasa I, Haregewoin A M, Zhang L, Tsai W Y, Guo J, Veith G M, Ross P N and Kostecki R2020 ACS Appl. Mater. Interfaces 12 40879 [15] Wang Y, Nakamura S, Ue M and Balbuena P B2001 J. Am. Chem. Soc. 123 11708 [16] Aurbach D, Ein-Ely Y and Zaban A1994 J. Electrochem. Soc. 141 L1 [17] Aurbach D, Ein-Eli Y, Markovsky B, Zaban A, Luski S, Carmeli Y and Yamin H1995 J. Electrochem. Soc. 142 2882 [18] Edström K and Herranen M2000 J. Electrochem. Soc. 147 3628 [19] Seidl L, Martens S, Ma J, Stimming U and Schneider O2016 Nanoscale 8 14004 [20] Zhuang G V, Xu K, Jow T R and Ross Jr P N2004 Solid State Lett. 7 A224 [21] Kostecki R, Lei J, McLarnon F, Shim J and Striebel K2006 J. Electrochem. Soc. 153 A669 [22] Cheng X B, Yan C, Peng H J, Huang J Q, Yang S T and Zhang Q2018 Energy Storage Mater. 10 199 [23] Leung K, Soto F, Hankins K, Balbuena P B and Harrison K L2016 J. Phys. Chem. C 120 6302 [24] Shi S, Lu P, Liu Z, Qi Y, Hector Jr L G, Li H and Harris S J2012 J. Am. Chem. Soc. 134 15476 [25] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R2016 Chin. Phys. B 25 018212 [26] Zhang S, Liu Y and Liu H2020 Mol. Simul. 46 573 [27] Muralidharan A, Chaudhari M I, Pratt L R and Rempe S B2018 Sci. Rep. 8 1 [28] Borodin O, Zhuang G V, Ross P N and Xu K2013 J. Phys. Chem. C 117 7433 [29] Borodin O and Bedrov D2014 J. Phys. Chem. C 118 18362 [30] Bedrov D, Borodin O and Hooper J B2017 J. Phys. Chem. C 121 16098 [31] Xu K2004 Chem. Rev. 104 4303 [32] Dudney N J, Hagaman E W, Veith G M and Sacci R L (U.S. Patent) 10 263 246 [2019-04-16] [33] Chen Z, Soltani A, Chen Y, Zhang Q, Davoodi A, Hosseinpour S, Peukert W and Liu W2022 Adv. Energy Mater. 12 2200924 [34] von Kolzenberg L, Werres M, Tetzloff J and Horstmann B2022 Phys. Chem. Chem. Phys. 24 18469 [35] Huang W, Wang J, Braun M R, Zhang Z, Li Y, Boyle D T, McIntyre P C and Cui Y2019 Matter 1 1232 [36] Xu K, Zhuang G V, Allen J L, Lee U, Zhang S S, Ross Jr P N and Jow T R2006 J. Phys. Chem. B 110 7708 [37] Borodin O, Smith G D and Fan P2006 J. Phys. Chem. B 110 22773 [38] Borodin O and Smith G D2009 J. Phys. Chem. B 113 1763 [39] Kushima A and Yildiz B2010 J. Mater. Chem. 20 4809 [40] Shen K H and Hall L M2020 Macromolecules 53 3655 [41] Shewmon P 1963 Diffusion in solids, 2nd edn. (New York: McGraw-Hill) pp. 84-86 [42] Södervall U, Friesel M and Lodding A1990 J. Chem. Soc. Faraday Trans. 86 1293 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|