Special Issue:
SPECIAL TOPIC — Smart design of materials and design of smart materials
|
SPECIAL TOPIC—Smart design of materials and design of smart materials |
Prev
Next
|
|
|
Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence |
Lei Huang(黄磊)1, Kai Ren(任凯)1,†, Huanping Zhang(张焕萍)1, and Huasong Qin(覃华松)2,‡ |
1 School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; 2 Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract Two-dimensional materials with novel mechanical and thermal properties are available for sensors, photodetectors, thermoelectric, crystal diode and flexible nanodevices. In this investigation, the mechanical and thermal properties of pristine SiC and GeC are explored by molecular dynamics simulations. First, the fracture strength and fracture strain behaviors are addressed in the zigzag and armchair directions at 300 K. The excellent toughness of SiC and GeC is demonstrated by the maximal fracture strain of 0.43 and 0.47 in the zigzag direction, respectively. The temperature-tunable tensile strength of SiC and GeC is also investigated. Then, using non-equilibrium molecular dynamics (NEMD) calculations, the thermal performances of SiC and GeC are explored. In particular, the thermal conductivity of SiC and GeC shows a pronounced size dependence and reaches up to 85.67 W·m-1·K-1 and 34.37 W·m-1·K-1, respectively. The goal of our work is to provide a theoretical framework that can be used in the near future. This will enable us to design an efficient thermal management scheme for two-dimensional materials in electronics and optoelectronics.
|
Received: 04 January 2023
Revised: 23 March 2023
Accepted manuscript online: 25 March 2023
|
PACS:
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
Fund: All the authors would like to thank the support of the Natural Science Foundation of Jiangsu (Grant No. BK20220407), the National Natural Science Foundation of China (Grant Nos. 12102323, 11890674), the China Postdoctoral Science Foundation (Grant No. 2021M692574), and the Fundamental Research Funds for the Central Universities (Grant No. sxzy012022024). This work is also supported by the HPC Center, Nanjing Forestry University, China. |
Corresponding Authors:
Kai Ren, Huasong Qin
E-mail: kairen@njfu.edu.cn;huasongqin@xjtu.edu.cn
|
Cite this article:
Lei Huang(黄磊), Kai Ren(任凯), Huanping Zhang(张焕萍), and Huasong Qin(覃华松) Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence 2023 Chin. Phys. B 32 076103
|
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [2] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2013 Chem. Soc. Rev. 42 2824 [3] Wu R, Zhu R Z, Zhao S H, Zhang G, Tian H and Ren T L 2021 Science China Information Sciences 64 140401 [4] Medeiros P V C, Stafström S and Björk J 2014 Phys. Rev. B 89 041407 [5] Yu C and Zhang G 2013 J. Appl. Phys. 113 044306 [6] Qin H. Chen Y, Wu Y, Li M, Liu Y and Pei Q X 2022 J. Phys. Chem. C 126 5759 [7] Fei H, Dong J, Arellano-Jimenez M J, Ye G, Dong Kim N, Samuel E L, Peng Z, Zhu Z, Qin F, Bao J, Yacaman M J, Ajayan P M, Chen D and Tour J M 2015 Nat. Commun. 6 8668 [8] Cadelano E and Colombo L 2012 Phys. Rev. B 85 245434 [9] Santos E J G, Sánchez-Portal D and Ayuela A 2010 Phys. Rev. B 81 125433 [10] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [11] Sang M, Shin J, Kim K and Yu K J 2019 Nanomaterials 9 374 [12] Liu Z, Zhang X, Yan X, Chen Y and Tian J 2012 Chinese Science Bulletin 57 2971 [13] Miro P, Audiffred M and Heine T 2014 Chem. Soc. Rev. 43 6537 [14] Ren K, Ma X, Liu X, Xu Y, Huo W, Li W and Zhang G 2022 Nanoscale 14 8463 [15] Zhang J, Zhang C, Ren K and Lin X 2022 Nanotechnology 33 345705 [16] Ren, K, Yan Y, Zhang Z, Sun M and Schwingenschlögl U 2022 Appl. Surf. Sci. 604 154317 [17] Sha Z D, Pei Q X, Zhou K, Dong Z and Zhang Y W 2018 Extreme Mechanics Letters 19 39 [18] Cao W, Xiao H, Ouyang T, Wang Z and Xiong R 2019 Phys. A 383 1493 [19] Qin H, Pei Q X, Liu Y and Zhang Y W 2019 Phys. Chem. Chem. Phys. 21 15845 [20] Jiang J W and Park H S 2014 Nat. Commun. 5 4727 [21] Wang B, Wu Q, Zhang Y, Ma L and Wang J 2019 ACS Appl. Mater. Interfaces 11 33231 [22] Ren K, Sun M, Luo Y, Wang S, Xu Y, Yu J and Tang W 2019 Phys. A 383 1487 [23] Li S, Sun M, Chou J P, Wei J, Xing H and Hu A 2018 Phys. Chem. Chem. Phys. 20 24726 [24] Ren K, Ren C, Luo Y, Xu Y, Yu J, Tang W and Sun M 2019 Phys. Chem. Chem. Phys. 21 9949 [25] Bondoux C, Prené P, Belleville P, Guillet F, Lambert S, Minot, B and Jérisian R 2005 Journal of the European Ceramic Society 25 2795 [26] Yin X, Kong L, Zhang L, Cheng L, Travitzky N and Greil P 2014 International Materials Reviews 59 326 [27] Widmann M, Lee S Y, Rendler T, Son N T, Fedder H, Paik S, Yang L P, Zhao N, Yang S, Booker I, Denisenko A, Jamali M, Momenzadeh S A, Gerhardt I, Ohshima T, Gali A, Janzen E and Wrachtrup J 2015 Nat. Mater. 14 164 [28] Whiteley S J, Wolfowicz G, Anderson C P, Bourassa A, Ma H, Ye M, Koolstra G, Satzinger K J, Holt M V, Heremans F J, Cleland A N, Schuster D I, Galli G and Awschalom D D 2019 Nat. Phys. 15 490 [29] Xu Z, Li Y, Li C and Liu Z 2016 Appl. Surf. Sci. 367 19 [30] Soref R A 1996 Journal of Vacuum Science & Technology A 14 913 [31] Peng Q, Liang C, Ji W and De S 2013 Mechanics of Materials 64 135 [32] Thompson A P, H M Aktulga, R Berger, D S Bolintineanu, W M Brown, P S Crozier, P J in't Veld, A Kohlmeyer, S G Moore, T D Nguyen, R Shan, M J Stevens, J Tranchida, C Trott and S J Plimpton 2022 Computer Physics Communications 271 108171 [33] Stukowski A 2010 Modelling and Simulation in Materials Science and Engineering 18 015012 [34] Pei Q X, Zhang Y W and Shenoy V B 2010 Carbon 48 898 [35] Pei Q X, Sha Z D, Zhang Y Y and Zhang Y W 2014 J. Appl. Phys. 115 023519 [36] Xiong S and Cao G 2015 Nanotechnology 26 185705 [37] Ren K, Liu X, Chen S, Cheng Y, Tang W and Zhang G 2020 Adv. Funct. Mater. 30 2004003 [38] Liu X, Zhang G and Zhang Y W 2016 Nano Lett. 16 4954 [39] Zhang Y Y, Pei Q X, Liu H Y and Wei N 2017 Phys. Chem. Chem. Phys. 19 27326 [40] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G 2020 Phys. Rep. 860 1 [41] Hu M and Poulikakos D 2012 Nano Lett. 12 5487 [42] Grest G S, Nagel S R, Rahman A and Witten T A 1981 J. Chem. Phys. 74 3532 [43] Qin H, Ren K, Zhang G, Dai Y and Zhang G 2022 Phys. Chem. Chem. Phys. 24 20437 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|