CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure |
Yuan Gao(高源)1, Huiping Li(李慧平)2, and Wenguang Zhu(朱文光)1,2,† |
1. International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; 2. Department of Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Based on first-principles calculations, a two-dimensional (2D) van der Waals (vdW) bilayer heterostructure consisting of two topologically trivial ferromagnetic (FM) monolayers CrI3 and ScCl2 is proposed to realize the quantum anomalous Hall effect (QAHE) with a sizable topologically nontrivial band gap of 4.5 meV. Its topological nature is attributed to an interlayer band inversion between the monolayers and critically depends on the symmetry of the stacking configuration. We further demonstrate that the topologically nontrivial band gap can be increased nearly linearly by the application of a perpendicular external pressure and reaches 8.1 meV at 2.7 GPa, and the application of an external out-of-plane electric field can also modulate the band gap and convert the system back to topologically trivial via eliminating the band inversion. An effective model is developed to describe the topological phase evolution in this bilayer heterostructure. This work provides a new candidate system based on 2D vdW materials for realization of potential high-temperature QAHE with considerable controllability.
|
Received: 24 January 2022
Revised: 07 April 2022
Accepted manuscript online:
|
PACS:
|
73.43.-f
|
(Quantum Hall effects)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.43.Cd
|
(Theory and modeling)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0204904 and 2019YFA0210004), the National Natural Science Foundation of China (Grant No. 11634011), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and the Fundamental Research Funds for the Central Universities (Grant No. WK2340000082). |
Corresponding Authors:
Wenguang Zhu
E-mail: wgzhu@ustc.edu.cn
|
Cite this article:
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光) Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure 2022 Chin. Phys. B 31 107304
|
[1] Haldane F 1988 Phys. Rev. Lett. 61 2015 [2] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61 [3] Chang C, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang P, Ji P, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S, He K, Wang Y, Lu L, Ma X and Xue Q 2013 Science 340 167 [4] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Nat. Phys. 10 731 [5] Kou X, Guo S T, Fan Y, Pan L, Lang M, Jiang Y, Shao Q, Nie T, Murata K, Tang J, Wang Y, He L, Lee T K, Lee W L and Wang K L 2014 Phys. Rev. Lett. 113 137201 [6] Bestwick A J, Fox E J, Kou X, Pan L, Wang K L and Goldhaber-Gordon D 2015 Phys. Rev. Lett. 114 187201 [7] Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473 [8] Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Takahashi K, Kawasaki M and Tokura Y 2015 Appl. Phys. Lett. 107 182401 [9] Deng Y, Yu Y, Shi M, Guo Z, Xu Z, Wang J, Chen X and Zhang Y 2020 Science 367 895 [10] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J and Wang Y 2020 Nat. Mater. 19 522 [11] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y and Wang J 2010 Natl. Sci. Rev. 7 1280 [12] Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A 2020 Science 367 900 [13] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A and Niu Q 2014 Phys. Rev. Lett. 112 116404 [14] Zhang J, Zhao B, Yao Y and Yang Z 2015 Sci. Rep. 5 10629 [15] Zhang J, Zhao B, Yao Y and Yang Z 2015 Phys. Rev. B 92 165418 [16] Otrokov M, Menshchikova T, Rusinov I, Vergniory M, Kuznetsov V and Chulkov E 2017 JETP Lett. 105 297 [17] Hirahara T, Eremeev S, Shirasawa T, Okuyama Y, Kubo T, Nakanishi R, Akiyama R, Takayama A, Hajiri T, Ideta S, Matsunami M, Sumida K, Miyamoto K, Takagi Y, Tanaka K, Okuda T, Yokoyama T, Kimura S, Hasegawa S and Chulkov E 2017 Nano Lett. 17 3493 [18] Petrov E, Silkin I, Menshchikova T and Chulkov E 2019 JETP Lett. 109 121 [19] Zhang H, Qin W, Chen M, Cui P, Zhang Z and Xu X 2019 Phys. Rev. B 99 165410 [20] Zou R, Zhan F, Zheng B, Wu X, Fan J and Wang R 2020 Phys. Rev. B 101 161108 [21] Zhang H, Ning Y, Yang W, Zhang J, Zhang R and Xu X 2019 Phys. Chem. Chem. Phys. 21 17087 [22] Qi S, Gao R, Chang M, Han Y and Qiao Z 2020 Phys. Rev. B 101 014423 [23] Fu H, Liu C and Yan B 2020 Sci. Adv. 6 eaaz0948 [24] Hogl P, Frank T, Zollner K, Kochan D, Gmitra M and Fabian J 2020 Phys. Rev. Lett. 124 136403 [25] Cui Q, Liang J, Yang B, Wang Z, Li P, Cui P and Yang H 2020 Phys. Rev. B 101 214439 [26] Zhu W, Song C, Liao L, Zhou Z, Bai H, Zhou Y and Pan F 2020 Phys. Rev. B 102 085111 [27] Deng H, Chen Z, Wolos A, Konczykowski M, Sobczak K, Sitnicka J, Fedorchenko I, Borysiuk J, Heider T, Plucinski L, Park K, Georgescu A, Cano J and Elbaum L 2021 Nat. Phys. 17 36 [28] Pan J, Yu J, Zhang Y, Du S, Janotti A, Liu C and Yan Q 2020 npj Comput. Mater. 6 152 [29] Blochl P 1994 Phys. Rev. B 50 17953 [30] Csonka G, Perdew J, Ruzsinszky A, Philipsen P, Lebégue S, Paier J, Vydrov O and Angyan J 2009 Phys. Rev. B 79 155107 [31] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [33] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616 [34] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [35] Mostofi A, Yates J, Lee Y, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [36] Wu Q, Zhang S, Song H, Troyer M and Soluyanov A 2018 Comput. Phys. Comm. 224 405 [37] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [38] Huang B, Clark G, Moratalla E, Klein D, Cheng R, Seyler K, Zhong D, Schmidgall E, McGuire M, Cobden D, Yao W, Xiao D, Herrero P and Xu X 2017 Nature 546 270 [39] Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T and Thygesen K S 2018 2D Mater. 5 042002 [40] Gjerding M N, Taghizadeh A, Rasmussen A, Ali S, Bertoldo F, Deilmann T, Knosgaard N R, Kruse M, Larsen A H, Manti S, Pedersen T G, Petralanda U, Skovhus T, Svendsen M K, Mortensen J J, Olsen T and Thygesen K S 2021 2D Mater. 8 044002 [41] Zhu Z, Cheng Y and Schwingenschlogl U 2012 Phys. Rev. B 85 235401 [42] Bradlyn B, Elcoro L, Cano J, Vergniory M, Wang Z, Felser C, Aroyo M and Bernevig B 2017 Nature 547 298 [43] Thouless D, Kohmoto M, Nightingale M and Nijs M 1982 Phys. Rev. Lett. 49 405 [44] Tong Q, Yu H, Zhu Q, Wang Y, Xu X and Yao W 2017 Nat. Phys. 13 356 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|