Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017901    DOI: 10.1088/1674-1056/ad0d9d
Special Issue: SPECIAL TOPIC — States and new effects in nonequilibrium
SPECIAL TOPIC—States and new effects in nonequilibrium Prev   Next  

Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission

Chaozhi Huang(黄超之)1,†, Chengyang Xu(徐骋洋)1,†, Fengfeng Zhu(朱锋锋)1, Shaofeng Duan(段绍峰)1, Jianzhe Liu(刘见喆)1, Lingxiao Gu(顾凌霄)1, Shichong Wang(王石崇)1, Haoran Liu(刘浩然)1, Dong Qian(钱冬)1,2,3,‡, Weidong Luo(罗卫东)1,2,§, and Wentao Zhang(张文涛)1,2,¶
1 Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
3 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  High-resolution time- and angle-resolved photoemission measurements were conducted on the topological insulator ZrTe5. With strong femtosecond photoexcitation, a possible ultrafast phase transition from a weak to a strong topological insulating phase was experimentally realized by recovering the energy gap inversion in a time scale that was shorter than 0.15 ps. This photoinduced transient strong topological phase can last longer than 2 ps at the highest excitation fluence studied, and it cannot be attributed to the photoinduced heating of electrons or modification of the conduction band filling. Additionally, the measured unoccupied electronic states are consistent with the first-principles calculation based on experimental crystal lattice constants, which favor a strong topological insulating phase. These findings provide new insights into the longstanding controversy about the strong and weak topological properties in ZrTe5, and they suggest that many-body effects including electron—electron interactions must be taken into account to understand the equilibrium weak topological insulating phase in ZrTe5.
Keywords:  time- and angle-resolved photoemission spectroscopy      electronic structure      topological insulator  
Received:  15 October 2023      Revised:  16 November 2023      Accepted manuscript online:  17 November 2023
PACS:  79.60.-i (Photoemission and photoelectron spectra)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  73.20.At (Surface states, band structure, electron density of states)  
  78.47.J- (Ultrafast spectroscopy (<1 psec))  
Fund: W. T. Z. acknowledges support from the National Key R&D Program of China (Grant Nos. 2021YFA1400202 and 2021YFA1401800), the National Natural Science Foundation of China (Grant Nos. 12141404 and 11974243), and the Natural Science Foundation of Shanghai (Grant Nos. 22ZR1479700 and 23XD1422200). S. F. D. acknowledges support from the China Postdoctoral Science Foundation (Grant No. 2022M722108). D.Q. acknowledges support from the National Key R&D Program of China (Grant Nos. 2022YFA1402400 and 2021YFA1400100) and the National Natural Science Foundation of China (Grant No. 12074248).
Corresponding Authors:  Dong Qian, Weidong Luo, Wentao Zhang     E-mail:  dqian@sjtu.edu.cn;wdluo@sjtu.edu.cn;wentaozhang@sjtu.edu.cn

Cite this article: 

Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛) Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission 2024 Chin. Phys. B 33 017901

[1] Brüne C, Liu C X, Novik E G, Hankiewicz E M, Buhmann H, Chen Y L, Qi X L, Shen Z X, Zhang S C and Molenkamp L W 2011 Phys. Rev. Lett. 106 126803
[2] Lin C, Ochi M, Noguchi R, Kuroda K, Sakoda M, Nomura A, Tsubota M, Zhang P, Bareille C, Kurokawa K, Arai Y, Kawaguchi K, Tanaka H, Yaji K, Harasawa A, Hashimoto M, Lu D, Shin S, Arita R, Tanda S and Kondo T 2021 Nat. Mater. 20 1093
[3] Zheng W Z, Ye X G, Lin B C, Li R R, Yu D P and Liao Z M 2019 Appl. Phys. Lett. 115 183103
[4] Cao J, Liang S, Zhang C, Liu Y, Huang J, Jin Z, Chen Z G, Wang Z, Wang Q, Zhao J, Li S, Dai X, Zou J, Xia Z, Li L and Xiu F 2015 Nat. Commun. 6 7779
[5] Xi X, Ma C, Liu Z, Chen Z, Ku W, Berger H, Martin C, Tanner D B and Carr G L 2013 Phys. Rev. Lett. 111 155701
[6] Ideue T, Hirayama M, Taiko H, Takahashi T, Murase M, Miyake T, Murakami S, Sasagawa T and Iwasa Y 2019 Proc. Natl. Acad. Sci. USA 116 25530
[7] Dziawa P, Kowalski B J, Dybko K, Buczko R, Szczerbakow A, Szot M, Lusakowska E, Balasubramanian T, Wojek B M, Berntsen M H, Tjernberg O and Story T 2012 Nat. Mater. 11 1023
[8] Xu S Y, Xia Y, Wray L A, Jia S, Meier F, Dil J H, Osterwalder J, Slomski B, Bansil A, Lin H, Cava R J and Hasan M Z 2011 Science 332 560
[9] Sato T, Segawa K, Kosaka K, Souma S, Nakayama K, Eto K, Minami T, Ando Y and Takahashi T 2011 Nat. Phys. 7 840
[10] Brahlek M, Bansal N, Koirala N, Xu S Y, Neupane M, Liu C, Hasan M Z and Oh S 2012 Phys. Rev. Lett. 109 186403
[11] Xu S Y, Neupane M, Belopolski I, Liu C, Alidoust N, Bian G, Jia S, Landolt G, Slomski B, Dil J H, Shibayev P P, Basak S, Chang T R, Jeng H T, Cava R J, Lin H, Bansil A and Hasan M Z 2015 Nat. Commun. 6 6870
[12] Inoue J I and Tanaka A 2010 Phys. Rev. Lett. 105 017401
[13] Inoue J I and Tanaka A 2012 Phys. Rev. B 85 125425
[14] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[15] Chen M N, Su W, Deng M X, Ruan J, Luo W, Shao D X, Sheng L and Xing D Y 2016 Phys. Rev. B 94 205429
[16] Ezawa M 2017 Phys. Rev. B 96 041205(R)
[17] Ledwith P, Kort-Kamp W J M and Dalvit D A R 2018 Phys. Rev. B 97 165426
[18] Liu H, Sun J T, Cheng C, Liu F and Meng S 2018 Phys. Rev. Lett. 120 237403
[19] Tanaka Y and Mochizuki M 2021 Phys. Rev. B 104 085123
[20] Vaswani C, Wang L L, Mudiyanselage D H, Li Q, Lozano P M, Gu G D, Cheng D, Song B, Luo L, Kim R H J, Huang C, Liu Z, Mootz M, Perakis I E, Yao Y, Ho K M and Wang J 2020 Phys. Rev. X 10 021013
[21] Shao C, Sacramento P D and Mondaini R 2021 Phys. Rev. B 104 125129
[22] Okada S, Sambongi T and Ido M 1980 J. Phys. Soc. Jpn. 49 839
[23] Littleton R T, Tritt T M, Feger C R, Kolis J, Wilson M L, Marone M, Payne J, Verebeli D and Levy F 1998 Appl. Phys. Lett. 72 2056
[24] Weng H M, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
[25] Manzoni G, Gragnaniello L, Autés G, Kuhn T, Sterzi A, Cilento F, Zacchigna M, Enenkel V, Vobornik I, Barba L, Bisti F, Bugnon P, Magrez A, Strocov V N, Berger H, Yazyev O V, Fonin M, Parmigiani F and Crepaldi A 2016 Phys. Rev. Lett. 117 237601
[26] Jiang Y, Wang J, Zhao T, Dun Z L, Huang Q, Wu X S, Mourigal M, Zhou H D, Pan W, Ozerov M, Smirnov D and Jiang Z 2020 Phys. Rev. Lett. 125 046403
[27] Li X B, Huang W K, Lv Y Y, Zhang K W, Yang C L, Zhang B B, Chen Y B, Yao S H, Zhou J, Lu M H, Sheng L, Li S C, Jia J F, Xue Q K, Chen Y F and Xing D Y 2016Phys. Rev. Lett. 116 176803
[28] Wu R, Ma J Z, Nie S M, Zhao L X, Huang X, Yin J X, Fu B B, Richard P, Chen G F, Fang Z, Dai X, Weng H M, Qian T, Ding H and Pan S H 2016 Phys. Rev. X 6 021017
[29] Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J, Nie S, Sun X, Zhang Y, Shen B, Liu J, Weng H, Zhao L, Chen G, Jia X, Hu C, Ding Y, Zhao W, Gao Q, Li C, He S, Zhao L, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Dai X, Fang Z, Xu Z, Chen C and Zhou X J 2017 Nat. Commun. 8 15512
[30] Xiong H, Sobota J A, Yang S L, Soifer H, Gauthier A, Lu M H, Lv Y Y, Yao S H, Lu D, Hashimoto M, Kirchmann P S, Chen Y F and Shen Z X 2017 Phys. Rev. B 95 195119
[31] Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F and Wang N L 2015 Phys. Rev. Lett. 115 176404
[32] Yuan X, Zhang C, Liu Y, Narayan A, Song C, Shen S, Sui X, Xu J, Yu H, An Z, Zhao J, Sanvito S, Yan H and Xiu F 2016 NPG Asia Mater. 8 e325
[33] Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosić I, Fedorov A, Zhong R, Schneeloch J, Gu G and Valla T 2016 Nat. Phys. 12 550
[34] Zheng G, Lu J, Zhu X, Ning W, Han Y, Zhang H, Zhang J, Xi C, Yang J, Du H, Yang K, Zhang Y and Tian M 2016 Phys. Rev. B 93 115414
[35] Shen L, Wang M X, Sun S C, Jiang J, Xu X, Zhang T, Zhang Q H, Lv Y Y, Yao S H, Chen Y B, Lu M H, Chen Y F, Felser C, Yan B H, Liu Z K, Yang L X and Chen Y L 2017 J. Electron Spectrosc. Relat. Phenom. 219 45
[36] Tang F, Ren Y, Wang P, Zhong R, Schneeloch J, Yang S A, Yang K, Lee P A, Gu G, Qiao Z and Zhang L 2019 Nature 569 537
[37] Xu B, Zhao L X, Marsik P, Sheveleva E, Lyzwa F, Dai Y M, Chen G F, Qiu X G and Bernhard C 2018 Phys. Rev. Lett. 121 187401
[38] Zheng G, Zhu X, Liu Y, Lu J, Ning W, Zhang H, Gao W, Han Y, Yang J, Du H, Yang K, Zhang Y and Tian M 2017 Phys. Rev. B 96 121401(R)
[39] Zhou Y, Wu J, Ning W, Li N, Du Y, Chen X, Zhang R, Chi Z, Wang X, Zhu X, Lu P, Ji C, Wan X, Yang Z, Sun J, Yang W, Tian M, Zhang Y and Mao H K 2016 Proc. Natl. Acad. Sci. USA 113 2904
[40] Zhang P, Noguchi R, Kuroda K, Lin C, Kawaguchi K, Yaji K, Harasawa A, Lippmaa M, Nie S, Weng H, Kandyba V, Giampietri A, Barinov A, Li Q, Gu G D, Shin S and Kondo T 2021 Nat. Commun. 12 406
[41] Mutch J, Chen W C, Went P, Qian T, Wilson I Z, Andreev A, Chen C C and Chu J H 2019 Sci. Adv. 5 eaav9771
[42] Konstantinova T, Wu L, Yin W G, Tao J, Gu G D, Wang X J, Yang J, Zaliznyak I A and Zhu Y 2020 npj Quantum Mater. 5 80
[43] Aryal N, Jin X, Li Q, Tsvelik A M and Yin W 2021 Phys. Rev. Lett. 126 016401
[44] Yang Y Y, Tang T W, Duan S F, Zhou C C, Hao D X and Zhang W T 2019 Rev. Sci. Instrum. 90 063905
[45] Huang C Z, Duan S F and Zhang W T 2022 Quantum Front. 1 15
[46] Zhang X, Song H Y, Nie X C, Liu S B, Wang Y, Jiang C Y, Zhao S Z, Chen G, Meng J Q, Duan Y X and Liu H Y 2019 Phys. Rev. B 99 125141
[47] Kremer G, Rumo M, Yue C, Pulkkinen A, Nicholson C W, Jaouen T, von Rohr F O, Werner P and Monney C 2021 Phys. Rev. B 104 035125
[48] Kotov V N, Uchoa B, Pereira V M, Guinea F and Castro Neto A H 2012 Rev. Mod. Phys. 84 1067
[49] Janssen L and Herbut I F 2016 Phys. Rev. B 93 165109
[50] Wang J R, Liu G Z and Zhang C J 2017 Phys. Rev. B 95 075129
[51] Tian Y, Ghassemi N and Ross J H 2021 Phys. Rev. Lett. 126 236401
[52] Rohwer T, Hellmann S, Wiesenmayer M, Sohrt C, Stange A, Slomski B, Carr A, Liu Y, Avila L M, Kalläne M, Mathias S, Kipp L, Rossnagel K and Bauer M 2011 Nature 471 490
[53] Mathias S, Eich S, Urbancic J, Michael S, Carr A V, Emmerich S, Stange A, Popmintchev T, Rohwer T, Wiesenmayer M, Ruffing A, Jakobs S, Hellmann S, Matyba P, Chen C, Kipp L, Bauer M, Kapteyn H C, Schneider H C, Rossnagel K, Murnane M M and Aeschlimann M 2016 Nat. Commun. 7 12902
[54] Huber R, Tauser F, Brodschelm A, Bichler M, Abstreiter G and Leitenstorfer A 2001 Nature 414 286
[55] Tang T W, Wang H Y, Duan S F, Yang Y Y, Huang C Z, Guo Y F, Qian D and Zhang W T 2020 Phys. Rev. B 101 235148
[1] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[2] Higher-order topological Anderson insulator on the Sierpiński lattice
Huan Chen(陈焕), Zheng-Rong Liu(刘峥嵘), Rui Chen(陈锐), and Bin Zhou(周斌). Chin. Phys. B, 2024, 33(1): 017202.
[3] Optical study of magnetic topological insulator MnBi4Te7
Zhi-Yu Liao(廖知裕), Bing Shen(沈冰), Xiang-Gang Qiu(邱祥冈), and Bing Xu(许兵). Chin. Phys. B, 2024, 33(1): 017802.
[4] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[5] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[6] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[7] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[8] Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(8): 087802.
[9] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[10] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[11] Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅). Chin. Phys. B, 2023, 32(6): 067102.
[12] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[13] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[14] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[15] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
No Suggested Reading articles found!