|
|
Optical study of magnetic topological insulator MnBi4Te7 |
Zhi-Yu Liao(廖知裕)1,2, Bing Shen(沈冰)3, Xiang-Gang Qiu(邱祥冈)1,2,4,†, and Bing Xu(许兵)1,2,‡ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We present an infrared spectroscopy study of the magnetic topological insulator MnBi4Te7 with antiferromagnetic (AFM) order below the Néel temperature TN = 13 K. Our investigation reveals that the low-frequency optical conductivity consists of two Drude peaks, indicating a response of free carriers involving multiple bands. Interestingly, the narrow Drude peak grows strongly as the temperature decreases, while the broad Drude peak remains relatively unchanged. The onset of interband transitions starts around 2000 cm-1, followed by two prominent absorption peaks around 10000 cm-1 and 20000 cm-1. Upon cooling, there is a notable transfer of spectral weight from the interband transitions to the Drude response. Below TN, the AFM transition gives rise to small anomalies of the charge response due to a band reconstruction. These findings provide valuable insights into the interplay between magnetism and the electronic properties in MnBi4Te7.
|
Received: 07 October 2023
Revised: 01 November 2023
Accepted manuscript online: 02 November 2023
|
PACS:
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
78.40.Kc
|
(Metals, semimetals, and alloys)
|
|
78.47.-p
|
(Spectroscopy of solid state dynamics)
|
|
Fund: Project supported by the the National Natural Science Foundation of China (Grant No. 12274442) and the National Key R&D Program of China (Grant No. 2022YFA1403901). |
Corresponding Authors:
Xiang-Gang Qiu, Bing Xu
E-mail: xgqiu@iphy.ac.cn;bingxu@iphy.ac.cn
|
Cite this article:
Zhi-Yu Liao(廖知裕), Bing Shen(沈冰), Xiang-Gang Qiu(邱祥冈), and Bing Xu(许兵) Optical study of magnetic topological insulator MnBi4Te7 2024 Chin. Phys. B 33 017802
|
[1] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61 [2] Xu G, Weng H M, Wang Z J, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806 [3] Chang C Z, Zhang J S, Feng X, et al. 2013 Science 340 167 [4] Chang C Z, Zhao W W, Kim D Y, Zhang H J, Assaf B A, Heiman D, Zhang S C, Liu C X, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473 [5] Essin A M, Moore J E and Vanderbilt D 2009 Phys. Rev. Lett. 102 146805 [6] Sekine A and Nomura K 2021 J. Appl. Phys. 129 141101 [7] Li R D, Wang J, Qi X L and Zhang S C 2010 Nat. Phys. 6 284 [8] Mong R S K, Essin A M and Moore J E 2010 Phys. Rev. B 81 245209 [9] Xiao D, Jiang J, Shin J H,Wang W B, Wang F, Zhao Y F, Liu C X, Wu W D, Chan M H W, Samarth N and Chang C Z 2018 Phys. Rev. Lett. 120 056801 [10] Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, Vyazovskaya A Y, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M, Arnau A and Chulkov E V 2017 2D Mater. 4 025082 [11] Gong Y, Guo J W, Li J H, et al. 2019 Chin. Phys. Lett. 36 076801 [12] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416 [13] Wu J Z, Liu F C, Sasase M, Ienaga K, Obata Y, Yukawa R, Horiba K, Kumigashira H, Okuma S, Inoshita T and Hosono H 2019 Sci. Adv. 5 eaax9989 [14] Yan J Q, Zhang Q, Heitmann T, Huang Z L, Chen K Y, Cheng J G, Wu W D, Vaknin D, Sales B C and McQueeney R J 2019 Phys. Rev. Materials 3 064202 [15] Li H, Liu S S, Liu C, Zhang J S, Xu Y, Yu R, Wu Y, Zhang Y G and Fan S S 2020 Phys. Chem. Chem. Phys. 22 556 [16] Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H and Zhang Y B 2020 Science 367 895 [17] Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S and Wang Y Y 2020 Nat. Mater. 19 522 [18] Ge J, Liu Y Z, Li J H, Li H, Luo T C, Wu Y, Xu Y and Wang J 2020 Natl. Sci. Rev. 7 1280 [19] Chen B, Fei F C, Zhang D Q, et al. 2019 Nat. Commun. 10 4469 [20] Chen Y J, Xu L X, Li J H, et al. 2019 Phys. Rev. X 9 041040 [21] Hao Y J, Liu P F, Feng Y, et al. 2019 Phys. Rev. X 9 041038 [22] Li H, Gao S Y, Duan S F, et al. 2019 Phys. Rev. X 9 041039 [23] Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J Q and Kaminski A 2020 Phys. Rev. B 101 161109 [24] Rienks E D L, Wimmer S, Sánchez-Barriga J, et al. 2019 Nature 576 423 [25] Lee S H, Zhu Y L, Wang Y, Miao L X, Pillsbury T, Yi H M, Kempinger S, Hu J, Heikes C A, Quarterman P, Ratcliff W, Borchers J A, Zhang H D, Ke X L, Graf D, Alem N, Chang C Z, Samarth N and Mao Z Q 2019 Phys. Rev. Research 1 012011 [26] Zeugner A, Nietschke F, Wolter A U B, et al. 2019 Chem. Mater. 31 2795 [27] Yan J Q, Liu Y H, Parker D S, Wu Y, Aczel A A, Matsuda M, McGuire M A and Sales B C 2020 Phys. Rev. Materials 4 054202 [28] Ding L, Hu C W, Ye F, Feng E X, Ni N and Cao H B 2020 Phys. Rev. B 101 020412 [29] Vidal R C, Zeugner A, Facio J I, et al. 2019 Phys. Rev. X 9 041065 [30] Xu L X, Mao Y H, Wang H Y, et al. 2020 Sci. Bull. 65 2086 [31] Hu C W, Gordon K N, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Brawer H, Ramirez A P, Ding L, Cao H B, Liu Q H, Dessau D and Ni N 2020 Nat. Commun. 11 97 [32] Hu Y, Xu L X, Shi M Z, Luo A Y, Peng S T, Wang Z Y, Ying J J, Wu T, Liu Z K, Zhang C F, Chen Y L, Xu G, Chen X H and He J F 2020 Phys. Rev. B 101 161113 [33] Klimovskikh I I, Otrokov M M, Estyunin D, et al. 2020 npj Quantum Mater. 5 54 [34] Wu X F, Li J Y, Ma X M, et al. 2020 Phys. Rev. X 10 031013 [35] Vidal R C, Bentmann H, Facio J I, Heider T, Kagerer P, Fornari C I, Peixoto T R F, Figgemeier T, Jung S, Cacho C, Büchner B, van den Brink J, Schneider C M, Plucinski L, Schwier E F, Shimada K, Richter M, Isaeva A and Reinert F 2021 Phys. Rev. Lett. 126 176403 [36] Gordon K N, Sun H Y, Hu C W, Linn A G, Li H X, Liu Y T, Liu P F, Mackey S, Liu Q H, Ni N and Dessau D 2019 arXiv:1910.13943v1[cond-mat.str-el] [37] Homes C C, Reedyk M, Cradles D A and Timusk T 1993 Appl. Opt. 32 2976 [38] Roychowdhury S, Singh S, Guin S N, Kumar N, Chakraborty T, Schnelle W, Borrmann H, Shekhar C and Felser C 2021 Chem. Mater. 33 8343 [39] Shi M Z, Lei B, Zhu C S, Ma D H, Cui J H, Sun Z L, Ying J J and Chen X H 2019 Phys. Rev. B 100 155144 [40] Xu B, Zhang Y, Alizade E H, Jahangirli Z A, Lyzwa F, Sheveleva E, Marsik P, Li Y K, Yao Y G, Wang Z W, Shen B, Dai Y M, Kataev V, Otrokov M M, Chulkov E V, Mamedov N T and Bernhard C 2021 Phys. Rev. B 103 L121103 [41] Dai Y M, Akrap A, Bud'ko S L, Canfield P C and Homes C C 2016 Phys. Rev. B 94 195142 [42] Yang R, Yin Z P, Wang Y L, Dai Y M, Miao H, Xu B, Qiu X G and Homes C C 2017 Phys. Rev. B 96 201108 [43] Hao J H, Hong W S, Zhou X X, Xiang Y, Dai Y M, Yang H, Li S L, Luo H Q and Wen H H 2022 Phys. Rev. B 106 014523 [44] Zhou X X, Li Y K, Fan X W, Hao J H, Dai Y M, Wang Z W, Yao Y G and Wen H H 2021 Phys. Rev. B 104 L041101 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|