Intrinsic electronic structure and nodeless superconducting gap of YBa2Cu3O7-δ observed by spatially-resolved laser-based angle resolved photoemission spectroscopy
1 National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 4 Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract The spatially-resolved laser-based high-resolution angle resolved photoemission spectroscopy (ARPES) measurements have been performed on the optimally-doped YBa2Cu3O7-δ (Y123) superconductor. For the first time, we found the region from the cleaved surface that reveals clear bulk electronic properties. The intrinsic Fermi surface and band structures of Y123 were observed. The Fermi surface-dependent and momentum-dependent superconducting gap was determined which is nodeless and consistent with the d+is gap form.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11888101 and 11974404), the National Key Research and Development Program of China (Grant Nos. 2021YFA1401800 and 2018YFA0704200), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000 and XDB33000000), the Youth Innovation Promotion Association of CAS (Grant No. Y2021006), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301800) and the Synergetic Extreme Condition User Facility (SECUF).
Corresponding Authors:
X J Zhou
E-mail: XJZhou@iphy.ac.cn
Cite this article:
Shuaishuai Li(李帅帅), Taimin Miao(苗泰民), Chaohui Yin(殷超辉), Yinghao Li(李颖昊), Hongtao Yan(闫宏涛), Yiwen Chen(陈逸雯), Bo Liang(梁波), Hao Chen(陈浩), Wenpei Zhu(朱文培), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Chengtian Lin(林成天), Hanqing Mao(毛寒青), Guodong Liu(刘国东), Zuyan Xu(许祖彦), Lin Zhao(赵林), and X J Zhou(周兴江) Intrinsic electronic structure and nodeless superconducting gap of YBa2Cu3O7-δ observed by spatially-resolved laser-based angle resolved photoemission spectroscopy 2023 Chin. Phys. B 32 117401
[1] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature518 179 [2] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys.75 473 [3] Campuzano J C, Norman M R and Randeria M 2004 The physics of superconductors, Ed. by Bennemann K H and Ketterson J B (Berlin:Springer) Vol. 2 [4] Zhou X J, Cuk T, Devereaux T, Nagaosa N and Shen Z X 2007 Handbook of high-temperature superconductivity:theory and experiment, Ed. by Schrieffer J R (Berlin:Springer) [5] Sobota J A, He Y and Shen Z X 2021 Rev. Mod. Phys.93 025006 [6] Campuzano J C, Jennings G, Arko A J, List R S, Veal B W and Benedek R 1990 Journal of Physics and Chemistry of Solids52 1411 [7] Campuzano J C, Smedskjaer L C, Benedek R, Jennings G and Bansil A 1991 Phys. Rev. B43 2788 [8] Claessen R, Mante G, Huss A, Manzke R, Skibowski M, Wolf Th and Fink J 1991 Phys. Rev. B44 2399 [9] Mante G, Claessen R, Huss A, Manzke R, Skibowski M, Wolf T, Knupfer M and Fink J 1991 Phys. Rev. B44 9500 [10] Liu R, Veal B W, Paulikas A P, Downey J W, Shi H, Olson C G, Gu C, Arko A J and Joyce J J 1992 Phys. Rev. B45 5614 [11] Lindroos M, Bansil A, Gofron K, Campuzano J C, Ding H, Liu R and Veal B W 1993 Physica C212 347 [12] Gofron K, Campuzano J C, Ding H, Gu C, Ding H, Liu R, Dabrowski B, Veal B W, Cramer W and Jennings G 1993 Journal of Physics and Chemistry of Solids54 1193 [13] Schabel M C, Park C H, Matsuura A, Shen Z X, Bonn D A, Liang R X and Hardy W N 1998 Phys. Rev. B57 6090 [14] Schabel M C, Park C H, Matsuura A, Shen Z X, Bonn D A, Liang R X and Hardy W N 1998 Phys. Rev. B57 6107 [15] Lu D H, Feng D L, Armitage N P, Shen K M, Damascelli A, Kim C, Ronning F, Shen Z X, Bonn D A, Liang R X, Hardy W N, Rykov A I and Tajima S 2001 Phys. Rev. Lett.86 4370 [16] Borisenko S V, Kordyuk A A, Zabolotnyy V, Geck J, Inosov D, Koitzsch A, Fink J, Knupfer M, Büchner B, Hinkov V, Lin C T, Keimer B, Wolf T, Chiuzbvaian S G, Patthey L and Follath R 2006 Phys. Rev. Lett.96 117004 [17] Zabolotnyy V B, Borisenko S V, Kordyuk A A, Geck J, Inosov D S, Koitzsch V, Fink J, Knupfer M, Büchner B, Drechsler S L, Berger H, Erb A, Lambacher M, Patthey L, Hinkov V and Keimer B 2007 Phys. Rev. B76 064519 [18] Nakayama K, Sato T, Terashima K, Matsui H, Takahashi T, Kubota M, Ono K, Nishizaki T, Takahashi Y and Kobayashi N 2007 Phys. Rev. B75 014513 [19] Hossain M A, Mottershead J D F, Fournier D, Bostwick A, McChesney J L, Rotenberg E, Liang R, Hardy W N, Sawatzky G A, Elfimov I S, Bonn D A and Damascelli A 2008 Nat. Phys.4 527 [20] Okawa M, Ishizaka K, Uchiyama H, Tadatomo H, Masui T, Tajima S, Wang X Y, Chen C T, Watanabe S, Chainani A, Saitoh T and Shin S 2009 Phys. Rev. B79 144528 [21] Nakayama K, Sato T, Terashima K, Arakane T, Takahashi T, Kubota M, Ono K, Nishizaki T, Takahashi Y and Kobayashi N 2009 Phys. Rev. B79 140503 [22] Dahm T, Hinkov V, Borisenko S V, Kordyuk A A, Zabolotnyy V B, Fink J, Büchner B, Scalapino D J, Hanke W and Keimer B 2009 Nat. Phys.5 217 [23] Fournier D, Levy G, Pennec Y, McChesney J L, Bostwick A, Rotenberg E, Liang R, Hardy W N, Bonn D A, Elfimov I S and Damascelli A 2010 Nat. Phys.6 905 [24] Zabolotnyy V B, Kordyuk A A, Evtushinsky D, Strocov V N, Patthey L, Schmitt T, Haug D, Lin C T, Hinkov V, Keimer B, Büchner B and Borisenko S V 2012 Phys. Rev. B85 064507 [25] Iwasawa H, Schröter N B M, Masui T, Tajima S, Kim T K and Hoesch M 2018 Phys. Rev. B98 081112 [26] Liu G D, Wang G L, Zhu Y, Zhang H B, Zhang G C, Y. Wang X, Zhou Y, Zhang W T, Liu H Y, Zhao L, Meng J Q, Dong X L, Chen C T, Xu Z Y and Zhou X J 2008 Rev. Sci. Instrum.79 023105 [27] Zhou X J, He S L, Liu G D, Zhao L, Yu L and Zhang W T 2018 Reports on Progress in Physics81 062101 [28] Lin C T, Zhou W, Liang W Y, Schönherr e and Bender H 1992 Physica C195 291 [29] Edwards H L, Markert J T and de Lozanne A L 1992 Phys. Rev. Lett.69 2967 [30] Derro D J, Hudson E W, Lang K M, Pan S H, Davis J C, Markert J T and de Lozanne A L 2002 Phys. Rev. Lett.88 097002 [31] Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater.5 204 [32] Norman M R, Randeria M, Ding H and Campuzano J C 1998 Phys. Rev. B57 R11093 [33] Hashimoto M, Vishik I M, He R H, Devereaux T P and Shen Z X 2014 Nat. Phys.10 483 [34] Kirtley J R, Tsuei C C, Ariando, Verwijs C J M, Harkema S and Hilgenkamp H 2006 Nat. Phys.2 190
Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2 Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.