Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 117401    DOI: 10.1088/1674-1056/acf498
RAPID COMMUNICATION Prev   Next  

Intrinsic electronic structure and nodeless superconducting gap of YBa2Cu3O7-δ observed by spatially-resolved laser-based angle resolved photoemission spectroscopy

Shuaishuai Li(李帅帅)1,2, Taimin Miao(苗泰民)1,2, Chaohui Yin(殷超辉)1,2, Yinghao Li(李颖昊)1,2, Hongtao Yan(闫宏涛)1,2, Yiwen Chen(陈逸雯)1,2, Bo Liang(梁波)1,2, Hao Chen(陈浩)1,2, Wenpei Zhu(朱文培)1,2, Shenjin Zhang(张申金)3, Zhimin Wang(王志敏)3, Fengfeng Zhang(张丰丰)3, Feng Yang(杨峰)3, Qinjun Peng(彭钦军)3, Chengtian Lin(林成天)4, Hanqing Mao(毛寒青)1,2,5, Guodong Liu(刘国东)1,2,5, Zuyan Xu(许祖彦)3, Lin Zhao(赵林)1,2,5, and X J Zhou(周兴江)1,2,5,†
1 National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
4 Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The spatially-resolved laser-based high-resolution angle resolved photoemission spectroscopy (ARPES) measurements have been performed on the optimally-doped YBa2Cu3O7-δ (Y123) superconductor. For the first time, we found the region from the cleaved surface that reveals clear bulk electronic properties. The intrinsic Fermi surface and band structures of Y123 were observed. The Fermi surface-dependent and momentum-dependent superconducting gap was determined which is nodeless and consistent with the d+is gap form.
Keywords:  YBCO      angle resolved photoemission spectroscopy      electronic structure      superconducting gap  
Received:  24 August 2023      Accepted manuscript online:  29 August 2023
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.72.-h (Cuprate superconductors)  
  74.72.Gh (Hole-doped)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11888101 and 11974404), the National Key Research and Development Program of China (Grant Nos. 2021YFA1401800 and 2018YFA0704200), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000 and XDB33000000), the Youth Innovation Promotion Association of CAS (Grant No. Y2021006), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301800) and the Synergetic Extreme Condition User Facility (SECUF).
Corresponding Authors:  X J Zhou     E-mail:  XJZhou@iphy.ac.cn

Cite this article: 

Shuaishuai Li(李帅帅), Taimin Miao(苗泰民), Chaohui Yin(殷超辉), Yinghao Li(李颖昊), Hongtao Yan(闫宏涛), Yiwen Chen(陈逸雯), Bo Liang(梁波), Hao Chen(陈浩), Wenpei Zhu(朱文培), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Chengtian Lin(林成天), Hanqing Mao(毛寒青), Guodong Liu(刘国东), Zuyan Xu(许祖彦), Lin Zhao(赵林), and X J Zhou(周兴江) Intrinsic electronic structure and nodeless superconducting gap of YBa2Cu3O7-δ observed by spatially-resolved laser-based angle resolved photoemission spectroscopy 2023 Chin. Phys. B 32 117401

[1] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[2] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[3] Campuzano J C, Norman M R and Randeria M 2004 The physics of superconductors, Ed. by Bennemann K H and Ketterson J B (Berlin:Springer) Vol. 2
[4] Zhou X J, Cuk T, Devereaux T, Nagaosa N and Shen Z X 2007 Handbook of high-temperature superconductivity:theory and experiment, Ed. by Schrieffer J R (Berlin:Springer)
[5] Sobota J A, He Y and Shen Z X 2021 Rev. Mod. Phys. 93 025006
[6] Campuzano J C, Jennings G, Arko A J, List R S, Veal B W and Benedek R 1990 Journal of Physics and Chemistry of Solids 52 1411
[7] Campuzano J C, Smedskjaer L C, Benedek R, Jennings G and Bansil A 1991 Phys. Rev. B 43 2788
[8] Claessen R, Mante G, Huss A, Manzke R, Skibowski M, Wolf Th and Fink J 1991 Phys. Rev. B 44 2399
[9] Mante G, Claessen R, Huss A, Manzke R, Skibowski M, Wolf T, Knupfer M and Fink J 1991 Phys. Rev. B 44 9500
[10] Liu R, Veal B W, Paulikas A P, Downey J W, Shi H, Olson C G, Gu C, Arko A J and Joyce J J 1992 Phys. Rev. B 45 5614
[11] Lindroos M, Bansil A, Gofron K, Campuzano J C, Ding H, Liu R and Veal B W 1993 Physica C 212 347
[12] Gofron K, Campuzano J C, Ding H, Gu C, Ding H, Liu R, Dabrowski B, Veal B W, Cramer W and Jennings G 1993 Journal of Physics and Chemistry of Solids 54 1193
[13] Schabel M C, Park C H, Matsuura A, Shen Z X, Bonn D A, Liang R X and Hardy W N 1998 Phys. Rev. B 57 6090
[14] Schabel M C, Park C H, Matsuura A, Shen Z X, Bonn D A, Liang R X and Hardy W N 1998 Phys. Rev. B 57 6107
[15] Lu D H, Feng D L, Armitage N P, Shen K M, Damascelli A, Kim C, Ronning F, Shen Z X, Bonn D A, Liang R X, Hardy W N, Rykov A I and Tajima S 2001 Phys. Rev. Lett. 86 4370
[16] Borisenko S V, Kordyuk A A, Zabolotnyy V, Geck J, Inosov D, Koitzsch A, Fink J, Knupfer M, Büchner B, Hinkov V, Lin C T, Keimer B, Wolf T, Chiuzbvaian S G, Patthey L and Follath R 2006 Phys. Rev. Lett. 96 117004
[17] Zabolotnyy V B, Borisenko S V, Kordyuk A A, Geck J, Inosov D S, Koitzsch V, Fink J, Knupfer M, Büchner B, Drechsler S L, Berger H, Erb A, Lambacher M, Patthey L, Hinkov V and Keimer B 2007 Phys. Rev. B 76 064519
[18] Nakayama K, Sato T, Terashima K, Matsui H, Takahashi T, Kubota M, Ono K, Nishizaki T, Takahashi Y and Kobayashi N 2007 Phys. Rev. B 75 014513
[19] Hossain M A, Mottershead J D F, Fournier D, Bostwick A, McChesney J L, Rotenberg E, Liang R, Hardy W N, Sawatzky G A, Elfimov I S, Bonn D A and Damascelli A 2008 Nat. Phys. 4 527
[20] Okawa M, Ishizaka K, Uchiyama H, Tadatomo H, Masui T, Tajima S, Wang X Y, Chen C T, Watanabe S, Chainani A, Saitoh T and Shin S 2009 Phys. Rev. B 79 144528
[21] Nakayama K, Sato T, Terashima K, Arakane T, Takahashi T, Kubota M, Ono K, Nishizaki T, Takahashi Y and Kobayashi N 2009 Phys. Rev. B 79 140503
[22] Dahm T, Hinkov V, Borisenko S V, Kordyuk A A, Zabolotnyy V B, Fink J, Büchner B, Scalapino D J, Hanke W and Keimer B 2009 Nat. Phys. 5 217
[23] Fournier D, Levy G, Pennec Y, McChesney J L, Bostwick A, Rotenberg E, Liang R, Hardy W N, Bonn D A, Elfimov I S and Damascelli A 2010 Nat. Phys. 6 905
[24] Zabolotnyy V B, Kordyuk A A, Evtushinsky D, Strocov V N, Patthey L, Schmitt T, Haug D, Lin C T, Hinkov V, Keimer B, Büchner B and Borisenko S V 2012 Phys. Rev. B 85 064507
[25] Iwasawa H, Schröter N B M, Masui T, Tajima S, Kim T K and Hoesch M 2018 Phys. Rev. B 98 081112
[26] Liu G D, Wang G L, Zhu Y, Zhang H B, Zhang G C, Y. Wang X, Zhou Y, Zhang W T, Liu H Y, Zhao L, Meng J Q, Dong X L, Chen C T, Xu Z Y and Zhou X J 2008 Rev. Sci. Instrum. 79 023105
[27] Zhou X J, He S L, Liu G D, Zhao L, Yu L and Zhang W T 2018 Reports on Progress in Physics 81 062101
[28] Lin C T, Zhou W, Liang W Y, Schönherr e and Bender H 1992 Physica C 195 291
[29] Edwards H L, Markert J T and de Lozanne A L 1992 Phys. Rev. Lett. 69 2967
[30] Derro D J, Hudson E W, Lang K M, Pan S H, Davis J C, Markert J T and de Lozanne A L 2002 Phys. Rev. Lett. 88 097002
[31] Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
[32] Norman M R, Randeria M, Ding H and Campuzano J C 1998 Phys. Rev. B 57 R11093
[33] Hashimoto M, Vishik I M, He R H, Devereaux T P and Shen Z X 2014 Nat. Phys. 10 483
[34] Kirtley J R, Tsuei C C, Ariando, Verwijs C J M, Harkema S and Hilgenkamp H 2006 Nat. Phys. 2 190
[1] Geometries and electronic structures of ZrnCu (n = 2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[2] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[3] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[4] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[5] Optimization of large-area YBa2Cu3O7-δ thin films by pulsed laser deposition for planar microwave devices
Pei-Yu Xiong(熊沛雨), Fu-Cong Chen(陈赋聪), Zhong-Pei Feng(冯中沛), Jing-Ting Yang(杨景婷), Yu-Dong Xia(夏钰东), Yue-Feng Yuan(袁跃峰), Xu Wang(王旭), Jie Yuan(袁洁), Yun Wu(吴云), Jing Shi(石兢), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(7): 077402.
[6] Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅). Chin. Phys. B, 2023, 32(6): 067102.
[7] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[8] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[9] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[10] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[11] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[12] Ultralow-temperature heat transport study of noncentrosymmetric superconductor CaPtAs
Yimin Wan(万一民), Erjian Cheng(程二建), Yuxin Chen(陈宇鑫), Chengcheng Zhao(赵成成), Chengpeng Tu(涂成鹏), Dongzhe Dai(戴东喆), Xiaofan Yang(杨小帆), Lu Xin(辛路), Wu Xie(谢武), Huiqiu Yuan(袁辉球), and Shiyan Li(李世燕). Chin. Phys. B, 2023, 32(12): 127403.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[15] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
No Suggested Reading articles found!