Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 116401    DOI: 10.1088/1674-1056/ace823
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A group of ductile metallic glasses prepared by modifying local structure of icosahedral quasicrystals

Qi Qiao(乔琪)1, Ji Wang(王吉)1, Zhengqing Cai(蔡正清)1, Shidong Feng(冯士东)1,3, Zhenqiang Song(宋贞强)1, Benke Huo(霍本科)1, Zijing Li(李子敬)2,†, and Li-Min Wang(王利民)1,‡
1 State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
2 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China;
3 Hebei Key Laboratory for Optimizing Metal Product Technology and Performance, Yanshan University, Qinhuangdao 066004, China
Abstract  Inspired by research into the association between icosahedral local orders and the plasticity of metallic glasses (MGs), beryllium (Be) is added to the icosahedral quasi-crystal forming alloy Zr40Ti40Ni20. In this way, bulk metallic glasses (BMGs) with favorable compressive plasticity are fabricated. Therein, the icosahedral quasi-crystalline phase is the main competing phase of amorphous phases and icosahedral local orders are the main local atomic motifs in amorphous phases. The alloys of (Zr40Ti40Ni20)76Be24 and (Zr40Ti40Ni20)72Be28 with their greater plastic strain capacity show similar characteristics to highly plastic amorphous systems: The serrated flow of compression curves always follows a near-exponential distribution. The primary and secondary shear bands intersect each other, bifurcate, and bend. Typical vein patterns are densely distributed on the fracture surfaces. The relaxation enthalpy of four MGs is linearly correlated with the plastic strain, that is, the greater the relaxation enthalpy, the larger the plastic strain.
Keywords:  metallic glass      glass formation      compressive plasticity      relaxation enthalpy  
Received:  22 May 2023      Revised:  14 July 2023      Accepted manuscript online:  18 July 2023
PACS:  64.70.pe (Metallic glasses)  
  46.35.+z (Viscoelasticity, plasticity, viscoplasticity)  
  82.56.Na (Relaxation)  
Fund: This work was supported by the National Key R&D Program of China (Grant No. 2018YFA0703602), the National Natural Science Foundation of China (Grant Nos. 51871193, 52271155 and 52271154), the Natural Science Foundation for Excellent Young Scholars of Hebei Province (Grant No. E2021203050), the Hundred Talent Program of Hebei Province (Grant No. E2020050018), and the Hebei Province Innovation Ability Promotion Project (Grant No. 22567609H).
Corresponding Authors:  Zijing Li, Li-Min Wang     E-mail:  lizijing_sh@163.com;Limin_Wang@ysu.edu.cn

Cite this article: 

Qi Qiao(乔琪), Ji Wang(王吉), Zhengqing Cai(蔡正清), Shidong Feng(冯士东), Zhenqiang Song(宋贞强), Benke Huo(霍本科), Zijing Li(李子敬), and Li-Min Wang(王利民) A group of ductile metallic glasses prepared by modifying local structure of icosahedral quasicrystals 2023 Chin. Phys. B 32 116401

[1] Bruck H A, Rosakis A J and Johnson W L 1996 J. Mater. Res. 11 503
[2] Inoue A 2000 Acta Mater. 48 279
[3] Inoue A, Shen B L, Yavari A R and Greer A L 2003 J. Mater. Res. 18 1487
[4] Inoue A, Shen B L and Chang C T 2006 Intermetallics 14 936
[5] Lewandowski J J and Lowhaphandu P 1998 Int. Mater. Rev. 43 145
[6] Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R 44 45
[7] Greer A L 1995 Front. Mater. Sci. 267 1947
[8] Spaepen F 1977 Acta Metall. 25 407
[9] Zhang Y and Greer A L 2006 Appl. Phys. Lett. 89 071907
[10] Donovan P E and Stobbs W M 1981 Acta Metall. 29 1419
[11] Johnson W L 1999 MRS Bull. 24 42
[12] Zhang Y, Wang W H and Greer A L 2006 Nat. Mater. 5 857
[13] Bei H, Xie S and George E P 2006 Phys. Rev. Lett. 96 105503
[14] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X and Wang W H 2007 Science 315 1385
[15] Zhang B, Zhao D Q, Pan M X, Wang R J and Wang W H 2006 Acta Mater. 54 3025
[16] Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A and Chen M W 2011 Phys. Rev. Lett. 106 125504
[17] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503
[18] Qiao J, Zhang L, Tong Y, Lyu G, Hao Q and Tao K 2022 Adv. Mech. 52 117
[19] Zhu Z W, Gu L, Xie G Q, Zhang W, Inoue A, Zhang H F and Hu Z Q 2011 Acta Mater. 59 2814
[20] Ding J, Cheng Y Q and Ma E 2014 Acta Mater. 69 343
[21] Zhou W, Lin X and Li J F 2013 J. Alloys Compd. 552 102
[22] Setyawan A D, Saida J, Kato H, Matsushita M and Inoue A 2010 Intermetallics 18 1884
[23] Pan J, Chan K C, Chen Q and Liu L 2012 Intermetallics 24 79
[24] Ren H T, Pan J, Chen Q, Chan K C, Liu Y and Liu L 2011 Scr. Mater. 64 609
[25] Liu L, Chan K C, Sun M and Chen Q 2007 Mater. Sci. Eng. A 445 697
[26] Saida J, Matsushita M, Li C and Inoue A 2000 Appl. Phys. Lett. 76 3558
[27] Saksl K, Franz H, Jóvári P, Klementiev K, Welter E, Ehnes A, Saida J, Inoue A and Jiang J Z 2003 Appl. Phys. Lett. 83 3924
[28] Louzguine D V and Inoue A 2001 Appl. Phys. Lett. 78 1841
[29] Qiang J B, Wang Y M, Wang D H, Kramer M, Thiel P and Dong C 2004 J. Non-Cryst. Solids 334 223
[30] Li Z, Pan S, Zhang S, Feng S, Li M, Liu R, Tian Y and Wang L min 2019 Intermetallics 109 97
[31] Cahn J W, Shechtman D and Gratias D 1986 J. Mat. Res. 1 13
[32] Qiang J B, Wang Y M, Wang D H, Kramer M, Thiel P and Dong C 2004 J. Non-Cryst. Solids 334 223
[33] Li Z J, Zhao L R, Pan S P, Fan C Z, Qiang J B, Dong C and Wang L M 2018 J. Alloys Compd. 746 356
[34] Sun B A, Yu H B, Jiao W, Bai H Y, Zhao D Q and Wang W H 2010 Phys. Rev. Lett. 105 035501
[35] Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H and Eckert J 2005 Phys. Rev. Lett. 94 205501
[36] Abelson P H 1987 Science 235 9
[37] Xi X K, Zhao D Q, Pan M X, Wang W H, Wu Y and Lewandowski J J 2005 Phys. Rev. Lett. 94 125510
[38] Greer A L, Cheng Y Q and Ma E 2013 Mater. Sci. Eng. R 74 71
[39] Trexler M M and Thadhani N N 2010 Prog. Mater. Sci. 55 759
[40] Zhou M, Hagos K, Huang H, Yang M and Ma L 2016 J. Non-Cryst. Solids 452 50
[41] Chen L Y, Setyawan A D, Kato H, Inoue A, Zhang G Q, Saida J, Wang X D, Cao Q P and Jiang J Z 2008 Scr. Mater. 59 75
[42] Beukel A and Sietsma J 1990 Acta Metall. Mater. 38 383
[1] Universal basis underlying temperature, pressure and size induced dynamical evolution in metallic glass-forming liquids
H P Zhang(张华平), B B Fan(范蓓蓓), J Q Wu(吴佳琦), and M Z Li(李茂枝). Chin. Phys. B, 2024, 33(1): 016101.
[2] Structural origin for composition-dependent nearest atomic distance in Cu-Zr metallic glass
Chi Zhang(张驰), Hua-Shan Liu(刘华山), and Hai-Long Peng(彭海龙). Chin. Phys. B, 2023, 32(11): 116101.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[5] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[6] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[7] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[8] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[9] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[10] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[11] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[12] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[13] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[14] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
[15] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
No Suggested Reading articles found!