Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 026401    DOI: 10.1088/1674-1056/abc14f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures

Israa Faisal Ghazi1, Israa Meften Hashim2, Aravindhan Surendar3,†, Nalbiy Salikhovich Tuguz4, Aseel M. Aljeboree5, Ayad F. Alkaim5, and Nisith Geetha6,
1 Department of Materials Engineering, Engineering College, University of Al-Qadisiyah, Qadisiyyah, Iraq; 2 Nursing College, University of Al-Qadisiyah, Qadisiyyah, Iraq; 3 Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India; 4 Department of Higher Mathematics, Kuban State Agrarian University, Krasnodar, Russian Federation; 5 College of Sciences for Women, University of Babylon, Babylon, Iraq; 6 Department of Electrical and Electronics Engineering, Sengunthar College of Engineering, Tiruchengode, India
Abstract  We investigate the role of aging temperature on relaxation of internal friction in Zr59Fe18Al10Ni10Nb3 metallic glass. For this purpose, dynamic mechanical analysis with different annealing temperatures and frequency values is applied. The results indicate that the aging process leads to decrease in the dissipated energy in the temperature range of glass transition. It is also found that the increase in applied frequency weakens the loss factor intensity in the metallic glass. Moreover, the Kohlrausch-Williams-Watts (KWW) equation is used to evaluate the evolution of internal friction during the aging process. According to the results, higher annealing temperature will make the primary internal friction in the material increase; however, a sharp decline is observed with the time. The drop in characteristic time of internal friction is also closely correlated to the rate of atomic rearrangement under the dynamic excitation so that at higher annealing temperatures, the driving force for the collaborative movement of atoms is easily provided and the mean relaxation time significantly decreases.
Keywords:  metallic glass      internal friction      relaxation      dynamic analysis  
Received:  21 July 2020      Revised:  28 September 2020      Accepted manuscript online:  15 October 2020
PACS:  64.70.pe (Metallic glasses)  
Corresponding Authors:  Corresponding author. E-mail: surendararavindhan@ieee.org Corresponding author. E-mail: nisith.geetha@gmail.com   

Cite this article: 

Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures 2021 Chin. Phys. B 30 026401

1 Telford M 2004 Mater. Today 7 36
2 Schroers J 2010 Adv. Mater. 22 1566
3 Perim E, Lee D, Liu Y, Toher C, Gong P, Li Y, Simmons W N, Levy O, Vlassak J J, Schroers J and Curtarolo S 2016 Nat. Commun. 7 12315
4 Gong P, Li F, Yin G, Deng L, Wang X and Jin J2020 J. Therm. Anal. Calorim.
5 Samavatian M, Gholamipour R, Amadeh A A and Mirdamadi S 2019 Metall. Mater. Trans. A 50 4743
6 Gu J L, Luan H W, Zhao S F, Bu H T, Si J J, Shao Y and Yao K F 2020 Mater. Sci. Eng. A 786 139417
7 Kosiba K, \cSopu D, Scudino S, Zhang L, Bednarcik J and Pauly S 2019 Int. J. Plast. 119 156
8 Cui X, Zhang X F, Li J J, Zu F Q, Meng L Z, Lu J, Luo F and Ma Y B 2020 Intermetallics 121 106773
9 Du Q, Liu X, Fan H, Zeng Q, Wu Y, Wang H, Chatterjee D, Ren Y, Ke Y, Voyles P M, Lu Z and Ma E 2020 Mater. Today 34 66
10 Guo W, Saida J, Zhao M, L\"u S and Wu S 2019 J. Mater. Sci. 54 8778
11 Wang X Q, Zhang Q Y, Liang S X, Jia Z, Zhang W C, Wang W M and Zhang L C 2020 Catalysts 10 48
12 Wang D P, Qiao J C and Liu C T 2019 Mater. Res. Lett. 7 305
13 Wang T, Ma X, Chen Y, Qiao J, Xie L and Li Q 2020 Intermetallics 121 106790
14 Samavatian M, Gholamipour R, Amadeh A A and Mirdamadi S 2019 Mater. Sci. Eng. A 753 218
15 Ebner C, Pauly S, Eckert J and Rentenberger C 2020 Mater. Sci. Eng. A 773 138848
16 Luo P, Li M X, Jiang H Y, Wen P, Bai H Y and Wang W H 2017 J. Appl. Phys. 121 135104
17 Burgess J A J, Holt C M B, Luber E J, Fortin D C, Popowich G, Zahiri B, Concepcion P, Mitlin D and Freeman M R 2016 Sci. Rep. 6 30973
18 Qiao J C, Chen Y H, Casalini R, Pelletier J M and Yao Y 2019 J. Mater. Sci. Technol. 35 982
19 Hao Q, Jia W Y and Qiao J C 2020 J. Non-Cryst. Solids 546 120266
20 Duan Y J, Yang D S, Qiao J C, Crespo D, Pelletier J M, Li L, Gao K and Zhang T 2020 Intermetallics 124 106846
21 Afonin G V, Mitrofanov Y P, Kobelev N P, da Silva Pinto M W, Wilde G and Khonik V A 2019 Scr. Mater. 166 6
22 Cui X, Qiao J C, Li J J, Meng L Z, Guo J, Zu F Q, Zhang X F, Bian B C, Zhang Q D and Ma Y B 2020 Intermetallics 122 106793
23 Song L J, Gao M, Xu W, Huo J T, Wang J Q, Li R W, Wang W H and Perepezko J H 2020 Acta Mater. 185 38
24 Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y and Yang Y 2019 Prog. Mater. Sci. 104 250
25 Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J and Yang Y 2017 Mater. Today 20 293
26 Wang W H 2019 Prog. Mater. Sci. 106 100561
27 Lv Y and Chen Q 2018 Thermochim. Acta 666 36
28 Cui X, Zhang X F, Meng L Z, Guo J, Ma Y B, Meng X J, Bian B C, Zhao R G and Zu F Q 2019 J. Non-Cryst. Solids 525 119670
29 Wang Z, Wang D, Jiang P, Wu W, Li X, Zu F and Shui J 2017 J. Wuhan Univ. Technol. Sci. Ed. 32 1476
30 Qiao J C, Ren T P, Lyu G J, Zhang L, Zhang H F, Pelletier J M and Yao Y 2019 Mater. Sci. Eng. A 739 193
31 Qiao J C, Sun B A, Gu J, Song M, Pelletier J M, Qiao J W, Yao Y and Yang Y 2017 J. Alloys Compd. 724 921
32 Qiao J C, Yao Y, Pelletier J M and Keer L M 2016 Int. J. Plast. 82 62
33 He G and Chen Q 2019 J. Alloys Compd. 797 213
34 Qiao J C, Wang Y J, Pelletier J M, Keer L M, Fine M E and Yao Y 2015 Acta Mater. 98 43
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[4] Effect of conical intersection of benzene on non-adiabatic dynamics
Duo-Duo Li(李多多) and Song Zhang(张嵩). Chin. Phys. B, 2022, 31(8): 083103.
[5] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[6] Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network
Xiaojing Zhong(钟晓静), Yukun Yang(杨宇琨), Runqing Miao(苗润青), Yuqing Peng(彭雨晴), and Guiyun Liu(刘贵云). Chin. Phys. B, 2022, 31(4): 040205.
[7] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[8] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[9] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[10] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[11] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[12] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[13] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[14] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[15] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
No Suggested Reading articles found!