Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 066301    DOI: 10.1088/1674-1056/abf111
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Hydrogen-induced dynamic slowdown of metallic glass-forming liquids

Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军)
School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  Dynamics of hydrogen doped Cu50Zr50 glass-forming liquids are investigated by using the newly developed modified embedded atomic method (MEAM) potential based on molecular dynamics simulations. We find that the doping of hydrogen atoms slows down the relaxation dynamics, reduces the fragility of supercooled melts, and promotes the occurrence of glass transitions. The dynamic slowdown is suggested to be closely related to the effect of hydrogen atoms on locally ordered structure of melts. With increasing concentration of hydrogen, the five-fold symmetry associated with Cu- and Zr-centered polyhedrons is lowered, on the other hand, the local order featuring metal hydrides is enhanced. The latter dominates the dynamic behaviors of glass-forming liquids, especially for Zr atoms, and results in the dynamic slowdown.
Keywords:  metallic glasses      hydrogen      dynamics  
Received:  30 January 2021      Revised:  15 March 2021      Accepted manuscript online:  23 March 2021
PACS:  63.50.Lm (Glasses and amorphous solids)  
  64.70.pe (Metallic glasses)  
  62.20.mj (Brittleness)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52071029). The computer resources at the Shanghai and Tianjin Supercomputer Centers are gratefully acknowledged.
Corresponding Authors:  Yong-Jun Lu     E-mail:  yongjunlv@bit.edu.cn

Cite this article: 

Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军) Hydrogen-induced dynamic slowdown of metallic glass-forming liquids 2021 Chin. Phys. B 30 066301

[1] Ciureanu M 1993 J. Electrochem. Soc. 140 579
[2] Hu Y C, Wang Y Z, Su R, et al. 2016 Adv. Mater. 28 10293
[3] Dong F Y, Su Y Q, Luo L S, Wang L, Wang S J, Guo J J and Fu H Z 2012 Int. J. Hydrogen Energy 37 14697
[4] Gebert A, Ismail N, Wolff U, Uhlemann M, Eckert J and Schultz L 2002 Intermetallics 10 1207
[5] Granata D, Fischer E and Löffler J F 2015 Acta. Mater. 99 415
[6] Mahjoub R, Laws K J, Hamilton N E, Granata D and Ferry M 2016 Comp. Mater. Sci. 125 197
[7] Su Y Q, Dong F Y, Luo L S, Guo J J, Han B S, Li Z X, Wang B Y and Fu H Z 2012 J. Non-Cryst. Solids. 358 2606
[8] Eliaz N and Eliezer D 1999 Adv. Perform. Mater. 6 5
[9] Katona T, Molnár Á, Perczel I V, Kopasz C and Hegedüs Z 1992 Surf. Interface Anal. 19 519
[10] Zheng C H, Wang H P, Zou P F, Hu L and Wei B 2020 Metall. Mater. Trans. A 51 4074
[11] Lü P, Wang H P, Zou P F, Zhou K, Hu L and Wei B 2018 J. Appl. Phys. 124 025103
[12] Baskes M I, Nelson J S and Wright A F 1989 Phys. Rev. B 40 6085
[13] Baskes M I 1992 Phys. Rev. B 46 2727
[14] Kim Y M and Lee B J 2008 J. Mater. Res. 23 1095
[15] Lee B M and Lee B J 2014 Metall. Mater. Trans. A 45 2906
[16] Mendelev M I, Sordelet D J and Kramer M J 2007 J. Appl. Phys. 102 043501
[17] Chen H S and Waseda Y 1979 Phys. Status Solidi 51 593
[18] Katz L, Guinan M and Borg R J 1971 Phys. Rev. B 4 330
[19] Bugeat J P and Ligeon E 1979 Phys. Lett. A 71 93
[20] Sakamoto Y and Takao K 1982 J. Jpn. Inst. Met 46 285
[21] Ishikawa T and McLellan R B 1985 J. Phys. Chem. Solids. 46 445
[22] Schwartz C M and Mallett M W 1954 Trans. ASM 46 640
[23] Mallett M W and Albrecht W M 1957 J. Electrochem. Soc. 104 142
[24] Mazzolai F M and Ryll-Nardzewski J 1976 J. Less-Common Met. 49 323
[25] Cheng Y, Wang Y Y, Peng C X, Zhang Z T, Wang P F, Jia L J, Li X L and Wang L 2019 J. Alloys Compd. 786 627
[26] Cao Q L, Huang D H, Yang J S and Wang F H 2020 Chin. Phys. Lett. 37 076201
[27] Angell C A 1995 Science 267 1924
[28] Brüning R and Crowell T 1999 J. Non-Cryst. Solids. 248 183
[29] Bi Q L and Lü Y J 2014 Chin. Phys. Lett. 31 106401
[30] Yeh X L, Samwer K and Johnson W L 1983 Appl. Phys. Lett. 42 242
[31] Gao W, Feng S D, Qi L, Zhang S L and Liu R P 2015 Chin. Phys. Lett. 32 116101
[32] Hu Y C, Li F X, Li M Z, Bai H Y and Wang W H 2015 Nat. Commun. 6 8310
[33] Liu X J, Xu Y, Hui X, Lu Z P, Li F, Chen G L, Lu J and Liu C T 2010 Phys. Rev. Lett. 105 155501
[34] Wu Z W, Li M Z, Wang W H and Liu K X 2015 Nat. Commun. 6 6035
[35] Persson K 2016 Materials Project
[36] Lü Y J and Entel P 2011 Phys. Rev. B 84 104203
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[4] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[5] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[8] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[11] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[12] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[13] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[14] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[15] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
No Suggested Reading articles found!