Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 066201    DOI: 10.1088/1674-1056/ab84d5
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys

Jia-Yi Wang(王佳怡)1,2, Hai-Yang Song(宋海洋)1, Min-Rong An(安敏荣)1, Qiong Deng(邓琼)2, Yu-Long Li(李玉龙)2
1 College of Material Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China;
2 School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  The dual-phase amorphous/crystalline nanostructured model proves to be an effective method to improve the plasticity of Mg alloys. The purpose of this paper is to explore an approach to improving the ductility and strength of Mg alloys at the same time. Here, the effect of amorphous phase strength, crystalline phase strength, and amorphous boundary (AB) spacing on the mechanical properties of dual-phase Mg alloys (DPMAs) under tensile loading are investigated by the molecular dynamics simulation method. The results confirm that the strength of DPMA can be significantly improved while its excellent plasticity is maintained by adjusting the strength of the amorphous phase or crystalline phase and optimizing the AB spacing. For the DPMA, when the amorphous phase (or crystalline phase) is strengthened to enhance its strength, the AB spacing should be increased (or reduced) to obtain superior plasticity at the same time. The results also indicate that the DPMA containing high strength amorphous phase exhibits three different deformation modes during plastic deformation with the increase of AB spacing. The research results will present a theoretical basis and early guidance for designing and developing the high-performance dual-phase hexagonal close-packed nanostructured metals.
Keywords:  dual-phase Mg alloy      metallic glass      mechanical property      molecular dynamics simulation  
Received:  02 February 2020      Revised:  29 March 2020      Accepted manuscript online: 
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  64.70.pe (Metallic glasses)  
  61.82.Bg (Metals and alloys)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11572259), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2018JM101 and 2019JQ-827), and the Program for Graduate Innovation Fund of Xi'an Shiyou University, China (Grant No. YCS19111004).
Corresponding Authors:  Hai-Yang Song, Yu-Long Li     E-mail:  gsfshy@sohu.com;liyulong@nwpu.edu.cn

Cite this article: 

Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙) Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys 2020 Chin. Phys. B 29 066201

[1] Wang Y, Chen M, Zhou F and M E 2002 Nature 419 912
[2] Liao M, Li B and Horstemeyer M F 2013 Comput. Mater. Sci. 79 534
[3] Gliiter H, Schimmel T and Hahn H 2014 Nano Today 9 17
[4] Hao L H, Liu Q, Fang Y Y, Huang M, Li W, Lu Y, Luo J F, Guan P F, Zhang Z, Wang L H and Han X D 2019 Comput. Mater. Sci. 169 109087
[5] Li X and Lu K 2019 Science 364 733
[6] Rajulapati K, Scattergood R, Murty K, Duscher G and Koch C 2006 Scr. Mater. 55 155
[7] Song H Y, Wang M, Deng Q and Li Y L 2018 J. Non-Cryst. Solids 490 13
[8] Lu B K and Wang C Y 2018 Chin. Phys. B 27 077104
[9] An M R, Song H Y and Su J F 2012 Chin. Phys. B 21 106202
[10] Song H Y and Li Y L 2016 Chin. Phys. B 25 026802
[11] Chang L, Zhou C Y, Li J and He X H 2018 Comput. Mater. Sci. 142 135
[12] Li G M, Wang Y B, Xiang M Z, Liao Y, Wang K and Chen J 2018 Int. J. Mech. Sci. 141 143
[13] Alaneme K K and Okotete E A 2017 J. Magnes. Alloy 5 460
[14] Silva C J, Kula A, Mishra R K and Niewczas M 2018 J. Alloys Compd. 761 58
[15] Tang L, Liu W, Ding Z, Zhang D, Zhao Y, Lavernia E J and Zhu Y 2016 Comput. Mater. Sci. 115 85
[16] Qiao J C, Wang Q, Crespo D, Yang Y and Pelletier J M 2017 Chin. Phys. B 26 016402
[17] Tang C and Wong C H 2015 Intermetallics 58 50
[18] Jiang S Q, Huang Y and Li M Z 2019 Chin. Phys. B 28 046103
[19] Volkert C A, Donohue A and Spaepen F 2008 J. Appl. Phys. 103 083539
[20] Zhao P, Li J and Wang Y 2014 Acta Mater. 73 149
[21] Albe K, Pitter Y and Sopu D 2013 Mech. Mater. 67 94
[22] Zhou X and Chen C 2016 Int. J. Plast 80 75
[23] Guo W, Jägle E, Yao J, Maier V, Korte-Kerzel S, Schneider J M and Raabe D 2014 Acta Mater. 80 94
[24] Zhao L, Chan K C and Shen S H 2018 Intermetallics 95 102
[25] Liu M C, Lee C J, Lai Y H and Huang J C 2010 Thin Solid Films 518 7295
[26] Song H Y and Li Y L 2015 Phys. Lett. A 379 2087
[27] Wu G, Chan K C, Zhu L, Sun L and Lu J 2017 Nature 545 80
[28] Song H Y, Dai J L, An M R, Xiao M X and Li Y L 2019 Comput. Mater. Sci. 165 88
[29] Song H Y, Zuo X D, An M R, Xiao M X and Li Y L 2019 Comput. Mater. Sci. 160 295
[30] Wang T W, Li X, Wu Q Q, Jiao T F, Liu X Y, Sun M, Hu F L and Huang D C 2018 Chin. Phys. B 27 124704
[31] Cui S W, Wei J A, Liu W W, Zhu R Z and Qian P 2019 Chin. Phys. B 28 016801
[32] Wang C Y, Lu S, Yu X D and Li H P 2019 Chin. Phys. B 28 016501
[33] Wolf D, Yamakov V, Phillpot S R, Mukherjee A and Gleiter H 2005 Acta Mater. 53 1
[34] Kim D H, Manuel M V, Ebrahimi F, Tulenko J S and Phillpot S R 2010 Acta Mater. 58 6217
[35] Song H Y, Zuo X D, Yin P, An M R and Li Y L 2018 J. Non-Cryst. Solids 494 1
[36] Liu X Y, Ohotnicky P P, Adams J B, Rohrer C L and Jr R W H 1997 Surf. Sci. 373 357
[37] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[38] Cheung K S and Yip S 1991 J. Appl. Phys. 70 5688
[39] Wang J, Li X, Pan S and Qin J 2017 Comput. Mater. Sci. 129 115
[40] Zhou X and Chen C 2016 Comput. Mater. Sci. 117 188
[41] Peng C X, Şopu D, Cheng Y, Song K K, Wang S H, Eckert J and Wang L 2019 Mater. 168 107662
[42] Kim H K, Lee M, Lee K R and Lee J C 2013 Acta Mater. 61 6597
[43] Song H Y, Zhang K, An M R, Wang L, Xiao M X and Li Y L 2019 J. Non-Cryst. Solids 521 119550
[44] Song H Y and Li Y L 2012 J. Appl. Phys. 112 054322
[45] Song H Y, Wang J Y, An M R, Xiao M X and Li Y L 2019 Comput. Mater. Sci. 162 199
[46] Luo H B, Sheng H W, Zhang H L, Wang F Q, Fan J K, Du J, Liu J P and Szlufarska I 2019 Nat. Commun. 10 3587
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[5] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[6] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[7] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[8] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[9] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[10] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[11] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[12] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[13] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[14] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[15] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
No Suggested Reading articles found!