Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037303    DOI: 10.1088/1674-1056/ab6c50

Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films

Bao-Qing Zhang(张宝庆)1, Gao-Peng Liu(刘高鹏)1, Hai-Tao Zong(宗海涛)2, Li-Ge Fu(付丽歌)2, Zhi-Fei Wei(魏志飞)1, Xiao-Wei Yang(杨晓炜)1, Guo-Hua Cao(曹国华)2
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
2 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
Abstract  Aluminum-doped ZnO (AZO) thin films with thin film metallic glass of Zr50Cu50 as buffer are prepared on glass substrates by the pulsed laser deposition. The influence of buffer thickness and substrate temperature on structural, optical, and electrical properties of AZO thin film are investigated. Increasing the thickness of buffer layer and substrate temperature can both promote the transformation of AZO from amorphous to crystalline structure, while they show (100) and (002) unique preferential orientations, respectively. After inserting Zr50Cu50 layer between the glass substrate and AZO film, the sheet resistance and visible transmittance decrease, but the infrared transmittance increases. With substrate temperature increasing from 25 ℃ to 520 ℃, the sheet resistance of AZO(100 nm)/ Zr50Cu50(4 nm) film first increases and then decreases, and the infrared transmittance is improved. The AZO(100 nm)/Zr50Cu50(4 nm) film deposited at a substrate temperature of 360 ℃ exhibits a low sheet resistance of 26.7 Ω/□, high transmittance of 82.1% in the visible light region, 81.6% in near-infrared region, and low surface roughness of 0.85 nm, which are useful properties for their potential applications in tandem solar cell and infrared technology.
Keywords:  aluminum-doped ZnO (AZO)      Zr50Cu50      thin film metallic glass      optoelectrical properties      morphology  
Received:  29 December 2019      Revised:  10 January 2020      Accepted manuscript online: 
PACS:  73.21.Ac (Multilayers)  
  42.70.-a (Optical materials)  
  68.55.-a (Thin film structure and morphology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51571085), the Key Science and Technology Program of Henan Province, China (Grant No. 19212210210), the Foundation of Henan Educational Committee, China (Grant No. 13B430019), and the Henan Postdoctoral Science Foundation, China.
Corresponding Authors:  Hai-Tao Zong, Guo-Hua Cao     E-mail:;

Cite this article: 

Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华) Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films 2020 Chin. Phys. B 29 037303

[1] Yang C W and Park J W 2010 Surf. Coat. Technol. 204 2761
[2] Shahid M U, Deen K M, Ahmad A, Akram M A, Aslam M and Akhtar W 2016 Appl. Nanosci. 6 235
[3] Ruske F, Pflug A, Sittinger V, Werner W, Szyszka B and Christie D J 2008 Thin Solid Films 516 4472
[4] Bamiduro O, Mustafa H, Mundle R, Konda R B and Pradhan A K 2007 Appl. Phys. Lett. 90 252108
[5] Rezaie M N, Manavizadeh N, Abadi E M, Nadimi E and Boroumand F A 2017 Appl. Surf. Sci. 392 549
[6] Babu BJ, Velumani S, Arenas-Alatorre J, Kassiba A, Chavez J, Park H, Hussain S Q, Yi J and Asomoza R 2015 J. Elect. Mat. 44 699
[7] Chen S J, Liu Y C, Ma J G, Lu Y M, Zhang J Y, Shen D Z and Fan X W 2003 J. Cryst. Growth 254 86
[8] Ashrafi A A, Ueta A, Kumano H and Suemune I 2000 J. Cryst. Growth 221 435
[9] Koike K, Komuro T, Ogata K, Sasa S, Inoue M and Yano M 2004 Physica E 21 679
[10] Crupi I, Boscarino S, Strano V, Mirabella S, Simone F and Terrasi A 2012 Thin Solid Films 520 4432
[11] Lee C J, Lin H K, Sun S Y and Huang J C 2010 Appl. Surf. Sci. 257 239
[12] Lin H K, Cheng K C and Huang J C 2015 Nanoscale Res. Lett. 10 274
[13] Lin H K and Chung B F 2019 Appl. Surf. Sci. 467-468 249
[14] Chu C W, Jason S C, Chen G J and Chiu S M 2008 Surf. Coat. Technol. 202 5564
[15] Lin Y T, Chung Y L, Wang Z K and Huang J C 2015 Intermetallics 57 133
[16] Liu S Y, Cao Q P, Qian X, Wang C, Wang X D, Zhang D X, Hu X L, Xu W, Ferry M and Jiang J Z 2015 Thin Solid Films 595 17
[17] Chu J P, Wang C Y, Chen L J and Chen Q 2011 Surf. Coat. Technol. 205 2914
[18] Coman T, Ursu E L, Nica V, Tiron V, Olaru M, Cotofana C, Dobromir M, Coroaba A, Dragos O G, Lupu N, Caltun O F and Ursu C 2014 Thin Solid Films 571 198
[19] Pat S, Mohammadigharehbagh R, Özen S, Şenay V, Yudar H H and Korkmaz S 2017 Vacuum 141 210
[20] Saini S, Mele P, Oyake T, Shiomi J, Niemelä J P, Karppinen M, Miyazaki K, Li C Y, Kawaharamura T, Ichinosef A and Molina-Lunag L 2019 Thin Solid Films 685 180
[21] Chen S, Warwick M E A and Binions R 2015 Sol. Energy Mater. Sol. Cells 137 202
[22] Banerjee P, Lee W J, Bae K R, Lee S B and Rubloff G W 2010 J. Appl. Phys. 108 043504
[23] Cao G H, Liu K, Liu G P, Zong H T, Balab H and Zhang B Q 2019 J. Non-Cryst Solids 513 105
[24] Yu Y Y, Xi F, Dai, C D, Cai L C, Tan Y, Li X M, Wu Q and Tan H 2015 Chin. Phys. B 24 066201
[25] Kyeong J S, Kim D H, Lee J I and Park E S 2012 Intermetallics 31 9
[26] Liu Y D, Wang X Y, Han Y and Chen H 2018 Bull. Mater. Sci. 41 106
[27] Rezaie M N, Manavizadeh N, Nadimi E and Boroumand F A 2017 J. Mater. Sci.: Mater. Electron. 28 9328
[28] Hu X X 2018 The microstructure and optical and electrical properties of the Cu50Zr50 thin film metallic glasses (MS Thesis) (Harbin: Harbin Institute of Technology) (in Chinese)
[29] Takeuchi A and Inoue A 2005 Mater. Trans. 46 2817
[30] Nomoto J I, Oda J I, Miyata T and Minami T 2010 Thin Solid Film 519 1587
[31] Haacke G 1976 J. Appl. Phys. 47 4086
[32] Papadopoulou E L, Varda M, Kouroupis-Agalou K, Androulidaki M, Chikodze E, Galtier P, Huyberechts G and Aperathitis E 2008 Thin Solid Film 516 8141
[33] Lin C J, Li X Y and Xu C Y 2019 J. Mater. Sci.: Mater. Electron. 30 721
[34] Yu P, Bai H Y, Tang M B, Wang W L and Wang W H 2005 Acta Phys. Sin. 54 3284 (in Chinese)
[1] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[4] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[5] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[6] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[7] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[8] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[9] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[10] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[11] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[12] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[13] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[14] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
[15] Self-assembled monolayer modified copper(I) iodide hole transport layer for efficient polymer solar cells
Yuancong Zhong(钟远聪), Qilun Zhang(张琪伦), You Wei(魏优), Qi Li(李琦), Yong Zhang(章勇). Chin. Phys. B, 2018, 27(7): 078802.
No Suggested Reading articles found!