Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 086402    DOI: 10.1088/1674-1056/ab969c

Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass

Qi Hao(郝奇)1, Ji-Chao Qiao(乔吉超)1, E V Goncharova2, G V Afonin2, Min-Na Liu(刘敏娜)1, Yi-Ting Cheng(程怡婷)1, V A Khonik2
1 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China;
2 Department of General Physics, Voronezh State Pedagogical University, Lenin Street 86, Voronezh 394043, Russia

A relationship between thermal effects and relaxation of the high-frequency shear modulus upon heat treatment of bulk Zr48(Cu5/6Ag1/6)44Al8 metallic glass is found. This relationship is attributed to the relaxation of a interstitial-type defect system frozen-in from the melt upon glass production. Calorimetric data show that thermal effects occurring on heating include heat release below the glass transition temperature, heat absorption above it and heat release caused by crystallization. The equation derived within the Interstitialcy theory can be used to calculate the shear modulus relaxation using the calorimetric data. The obtained results are used to trace the defect concentration as functions of temperature and thermal prehistory.

Keywords:  shear modulus      metallic glass      structural relaxation      interstitialcy theory  
Received:  08 April 2020      Revised:  08 May 2020      Accepted manuscript online: 
PACS: (Metallic glasses)  
  07.20.Fw (Calorimeters)  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  

Project supported by the National Natural Science Foundation of China (Grant No. 51971178), the Astronautics Supporting Technology Foundation of China (Grant No. 2019-HT-XG), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JM-344), the Russian Science Foundation (Grant No. 20-62-46003), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102019ghxm007 and 3102017JC01003).

Corresponding Authors:  Ji-Chao Qiao     E-mail:

Cite this article: 

Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass 2020 Chin. Phys. B 29 086402

[1] Golding B, Bagley B G and Hsu F S L 1972 Phys. Rev. Lett. 29 68
[2] Wang W H 2012 Prog. Mater. Sci. 57 487
[3] Hou Z Y, Liu R S, Tian Z A and Wang J G 2011 Chin. Phys. B 20 66102
[4] Yang L and Guo G Q 2010 Chin. Phys. B 19 126101
[5] Qiao J C, Wang Q, Crespo D, Yang Y and Pelletier J M 2017 Chin. Phys. B 26 16402
[6] Schuh C A, Hufnagel T C and Ramamurty U 2007 Acta Mater. 55 4067
[7] Wang W H 2012 Nat. Mater 11 275
[8] Wagner H, Bedorf D, Küchemann S, Schwabe M, Zhang B, Arnold W and Samwer K 2011 Nat. Mater 10 439
[9] Rouxel T, Ji H, Hammouda T and Moréac A 2008 Phys. Rev. Lett. 100 225501
[10] Qiao J C, Yao Y, Pelletier J M and Keer L M 2016 Int. J. Plast 82 62
[11] Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y and Yang Y 2019 Prog. Mater. Sci. 104 250
[12] Granato A V 2014 Eur. Phys. J. B 87 18
[13] Holder J, Granato A V and Rehn L E 1974 Phys. Rev. Lett. 32 1054
[14] Makarov A S, Mitrofanov Y P, Afonin G V, Kobelev N P and Khonik V A 2019 Scr. Mater. 168 10
[15] Goncharova E V, Konchakov R A, Makarov A S, Kobelev N P and Khonik V A 2017 J. Phys.:Condens. Matter 29 305701
[16] Khonik V A and Kobelev N P 2019 Metals 9 605
[17] Afonin G V, Mitrofanov Y P, Kobelev N P, da Silva Pinto M W, Wilde G and Khonik V A 2019 Scr. Mater. 166 6
[18] Mitrofanov Y P, Makarov A S, Khonik V A, Granato A V, Joncich D M and Khonik S V 2012 Appl. Phys. Lett. 101 131903
[19] Mitrofanov Y P, Wang D P, Makarov A S, Wang W H and Khonik V A 2016 Sci. Rep. 6 23026
[20] Mitrofanov Y P, Afonin G V, Makarov A S, Kobelev N P and Khonik V A 2018 Intermetallics 101 116
[21] Duan Y J, Qiao J C, Crespo D, Goncharova E V, Makarov A S, Afonin G V and Khonik V A 2020 J. Alloys Compd. 830 154564
[22] Hirao M and Ogi H 2017 Electromagnetic Acoustic Transducers (Berlin:Springer)
[23] Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bendnarcik J, Franz H, Liu Y G, Cao Q P and Jiang J Z 2008 Acta Mater. 56 1785
[24] Makarov A S, Khonik V A, Wilde G, Mitrofanov Y P and Khonik S V 2014 Intermetallics 44 106
[25] Makarov A S, Mitrofanov Y P, Konchakov R A, Kobelev N P, Csach K, Qiao J C and Khonik V A 2019 J. NonCryst. Solids 521 119474
[1] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[2] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[3] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[4] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[5] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[6] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[7] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[8] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[9] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[10] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[11] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[12] Uncovering the internal structure of five-fold twinned nanowires through 3D electron diffraction mapping
Xin Fu(付新). Chin. Phys. B, 2020, 29(6): 068101.
[13] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
[14] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[15] Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective
Shaoqin Jiang(江少钦), Yong Huang(黄勇), Maozhi Li(李茂枝). Chin. Phys. B, 2019, 28(4): 046103.
No Suggested Reading articles found!