Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057103    DOI: 10.1088/1674-1056/abdda5
Special Issue: SPECIAL TOPIC — Machine learning in condensed matter physics
SPECIAL TOPIC—Machine learning in condensed matter physics Prev   Next  

Quantitative structure-plasticity relationship in metallic glass: A machine learning study

Yicheng Wu(吴义成)1, Bin Xu(徐斌)1, Yitao Sun(孙奕韬)2, and Pengfei Guan(管鹏飞)1,†
1 Beijing Computational Science Research Center, Beijing 100193, China;
2 Institutes of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The lack of the long-range order in the atomic structure challenges the identification of the structural defects, akin to dislocations in crystals, which are responsible for predicting plastic events and mechanical failure in metallic glasses (MGs). Although vast structural indicators have been proposed to identify the structural defects, quantitatively gauging the correlations between these proposed indicators based on the undeformed configuration and the plasticity of MGs upon external loads is still lacking. Here, we systematically analyze the ability of these indicators to predict plastic events in a representative MG model using machine learning method. Moreover, we evaluate the influences of coarse graining method and medium-range order on the predictive power. We demonstrate that indicators relevant to the low-frequency vibrational modes reveal the intrinsic structural characteristics of plastic rearrangements. Our work makes an important step towards quantitative assessments of given indicators, and thereby an effective identification of the structural defects in MGs.
Keywords:  metallic glass      structure      plasticity      machine learning  
Received:  09 December 2020      Revised:  14 January 2021      Accepted manuscript online:  20 January 2021
PACS:  71.23.Cq (Amorphous semiconductors, metallic glasses, glasses)  
  61.25.Mv (Liquid metals and alloys)  
  81.40.Lm (Deformation, plasticity, and creep)  
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018004), the NSAF Joint Program (Grant No. U1930402), the National Natural Science Foundation of China (Grant No. 51801230), and the National Key Research and Development Program of China (Grant No. 2018YFA0703601).
Corresponding Authors:  Pengfei Guan     E-mail:  pguan@csrc.ac.cn

Cite this article: 

Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞) Quantitative structure-plasticity relationship in metallic glass: A machine learning study 2021 Chin. Phys. B 30 057103

[1] Telford M 2004 Mater. Today 7 36
[2] Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R: Rep. 44 45
[3] Wang W H 2009 Adv. Mater. 21 4524
[4] Schuh C A, Hufnagel T C and Ramamurty U 2007 Acta Mater. 55 4067
[5] Spaepen F 1977 Acta Metall. 25 407
[6] Argon A 1979 Acta Metall. 27 47
[7] Falk M L and Langer J S 1998 Phys. Rev. E 57 7192
[8] Wang Z and Wang W H 2019 Natl. Sci. Rev. 6 304
[9] Ma E 2015 Nat. Mater. 14 547
[10] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503
[11] Ding J, Patinet S, Falk M L, Cheng Y and Ma E 2014 Proc. Natl. Acad. Sci. USA 111 14052
[12] Ding J, Cheng Y Q, Sheng H, Asta M, Ritchie R O and Ma E 2016 Nat. Commun. 7 13733
[13] Wei D, Yang J, Jiang M Q, Wei B C, Wang Y J and Dai L H 2019 Phys. Rev. B 99 014115
[14] Wang Q and Jain A 2019 Nat. Commun. 10 5537
[15] Fan Z, Ding J and Ma E 2020 Mater. Today 40 48
[16] Patinet S, Vandembroucq D and Falk M L 2016 Phys. Rev. Lett. 117 045501
[17] Richard D, Ozawa M, Patinet S, Stanifer E, Shang B, Ridout S A, Xu B, Zhang G, Morse P K, Barrat J-L, Berthier L, Falk M L, Guan P, Liu A J, Martens K, Sastry S, Vandembroucq D, Lerner E and Manning M L 2020 Phys. Rev. Mater. 4 113609
[18] Cubuk E D, Schoenholz S S, Rieser J M, Malone B D, Rottler J, Durian D J, Kaxiras E and Liu A J 2015 Phys. Rev. Lett. 114 108001
[19] Schoenholz S S, Cubuk E D, Sussman D M, Kaxiras E and Liu A J 2016 Nat. Phys. 12 469
[20] Cubuk E D, Ivancic R J S, Schoenholz S S et al. 2017 Science 358 1033
[21] Schoenholz S S, Cubuk E D, Kaxiras E and Liu A J 2017 Proc. Natl. Acad. Sci. USA 114 263
[22] Sussman D M, Schoenholz S S, Cubuk E D and Liu A J 2017 Proc. Natl. Acad. Sci. USA 114 10601
[23] Plimpton S 1995 J. Comput. Phys. 117 1
[24] Cheng Y, Ma E and Sheng H W 2009 Phys. Rev. Lett. 102 245501
[25] Nosé S 1984 J. Chem. Phys. 81 511
[26] Rodney D, Tanguy A and Vandembroucq D 2011 Model. Simul. Mat. Sci. Eng. 19 083001
[27] Maloney C and Lemaȋtre A 2004 Phys. Rev. Lett. 93 016001
[28] Sun Y T, Bai H Y, Li M Z and Wang W H 2017 J. Phys. Chem. Lett. 8 3434
[29] Chang C C and Lin C J 2011 ACM Trans. Intell. Syst. Technol. 2 27
[30] Fawcett T 2006 Pattern Recognit. Lett. 27 861
[31] Wang Q, Ding J, Zhang L, Podryabinkin E, Shapeev A and Ma E 2020 npj Comput. Mater. 6 194
[32] Manning M and Liu A 2011 Phys. Rev. Lett. 107 108302
[33] Widmer-Cooper A, Harrowell P and Fynewever H 2004 Phys. Rev. Lett. 93 135701
[34] Widmer-Cooper A and Harrowell P 2006 Phys. Rev. Lett. 96 185701
[35] Widmer-Cooper A and Harrowell P 2006 J. Non-Cryst. Solids 352 5098
[36] Tong H and Tanaka H 2018 Phys. Rev. X 8 011041
[37] Tong H and Tanaka H 2019 Nat. Commun. 10 5596
[38] Sheng H, Luo W, Alamgir F, Bai J and Ma E 2006 Nature 439 419
[39] Lee M, Lee C M, Lee K R, Ma E and Lee J C 2011 Acta Mater. 59 159
[40] Wang B, Luo L, Guo E, Su Y, Wang M, Ritchie R O, Dong F, Wang L, Guo J and Fu H 2018 npj Comput. Mater. 4 41
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[5] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[6] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[7] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[8] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[9] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[10] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[11] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[12] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[13] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[14] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[15] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
No Suggested Reading articles found!