Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 066401    DOI: 10.1088/1674-1056/ab8628
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys

Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波)
Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Amorphous Ti-Cu-Zr-Ni alloys with minor addition of Sn and Al were prepared by melt spinning technique. The effects of Sn and Al additions on the microstructures and mechanical properties of glassy ribbons were investigated. The amorphous state of ribbons was confirmed by x-ray diffraction and transmission electron microscopy, where those ribbons with Sn addition exhibited a fully amorphous state. The characteristic temperature indicates that Ti45Cu35Zr10Ni5Sn5 alloy has a stronger glass-forming ability, as proven by differential scanning calorimetry. Ti45Cu35Zr10Ni5Al5 alloy showed a better hardness of 9.23 GPa and elastic modulus of 127.15 GPa and good wear resistance. Ti45Cu35Zr10Ni5Sn5 alloy displayed a pop-in event related to discrete plasticity according to nanoindentation. When the temperature is below 560 K, Ti45Cu35Zr10Ni5Sn5 alloy mainly exhibits elasticity. When the temperature rises between 717 K and 743 K, it shows a significant increase in elasticity but decrease in viscoelasticity after the ribbon experiences the main relaxation at 717 K. When the temperature is above 743 K, the ribbon shows viscoplasticity.
Keywords:  metallic glasses      amorphous ribbons      mechanical properties      nanoindentation  
Received:  26 February 2020      Revised:  31 March 2020      Accepted manuscript online: 
PACS:  64.70.pe (Metallic glasses)  
  63.50.Lm (Glasses and amorphous solids)  
  62.20.-x (Mechanical properties of solids)  
  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51671161, U1806219, U1660108, and 51327901) and the Research Project of the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2017JM5116 and 2020JZ-08).
Corresponding Authors:  Fu-Ping Dai     E-mail:  fpdai@nwpu.edu.cn

Cite this article: 

Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波) Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys 2020 Chin. Phys. B 29 066401

[1] Borja C E, Figueroa I A, Lozada-Flores O, Estrada M, Lara-RodrÍGuez G A and Verduzco J A 2018 Trans. Nonferrous Met. Soc. Chin. 28 1157
[2] Gargarella P, Pauly S, Samadi Khoshkhoo M, Kühn U and Eckert J 2014 Acta Mater. 65 259
[3] Sun D, Shang C, Liu Z and Gong X 2017 Chin. Phys. Lett. 34 026402
[4] Sun Y T, Wang C, Lu Y M, Hu Y C, Luo P, Liu M, Xian H J, Zhao D Q, Ding D W, Sun B A, Pan M X, Wen P, Bai H Y, Liu Y H and Wang W H 2018 Acta Phys. Sin. 67 126101 (in Chinese)
[5] Inoue A and Takeuchi A 2011 Acta Mater. 59 2243
[6] Fornell J, Van Steenberge N, Varea A, Rossinyol E, Pellicer E, Surinach S, Baro M D and Sort J 2011 J. Mech. Behav. Biomed. Mater. 4 1709
[7] Greer A L 2009 Materials Today 12 14
[8] Gargarella P, Pauly S, Khoshkhoo M S, Kiminami C S, Kühn U and Eckert J 2016 J. Alloys Compd. 663 531
[9] Zhang Z Y, Wu Y, Zhou J, Song W L, Cao D, Wang H, Liu X J and Lu Z P 2013 Intermetallics 42 68
[10] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D and Johnson W L 2008 Nature 451 1085
[11] González S 2016 J. Mater. Res. 31 76
[12] Liu Z Q, Li R, Liu G and Su W H 2012 Acta Mater. 60 3128
[13] Kolodziejska J A, Kozachkov H, Kranjc K, Hunter A, Marquis E, Johnson W L, Flores K M and Hofmann D C 2016 Sci. Rep. 6 22563
[14] Gong P, Wang X and Yao K 2016 J. Mater. Sci. 51 5321
[15] Wu X W, Zhou Y, Chen F and Qin F X 2019 Mater. Sci. Technol. 27 73 (in Chinese)
[16] Garrett G R, Demetriou M D, Chen J and Johnson W L 2012 Appl. Phys. Lett. 101 241913
[17] Oliver W C and Pharr G M 1992 J. Mater. Res. 7 1564
[18] Qiao J C and Pelletier J M 2014 J. Mater. Sci. Technol. 30 523
[19] Wang Q, Pelletier J M and Blandin J J 2010 J. Alloys Compd. 504 357
[20] Kong J, Ye Z, Chen W, Shao X, Wang K and Zhou Q 2015 Mater. Des. 88 69
[21] Guo H, Jiang C, Yang B and Wang J 2017 J. Mater. Sci. Technol. 33 1272
[22] Egami T and Waseda Y 1984 J. Non-Cryst. Solids 64 113
[23] Wang W H 2007 Prog. Mater. Sci. 52 540
[24] Takeuchi A and Inoue A 2005 Mater. Trans. 46 2817
[25] Yao K F, Ruan F, Yang Y Q and Chen N 2006 Appl. Phys. Lett. 88 122106
[26] Guan P F, Wang B, Wu Y C, Zhang S, Shang B S, Hu Y C, Su R and Liu Q 2017 Acta Phys. Sin. 66 176112 (in Chinese)
[27] Sheng H W, Luo W K and Alamgir F M 2006 Nature 439 419
[28] Venkataraman S, Stoica M, Scudino S, Gemming T, Mickel C, Kunz U, Kim K B, Schultz L and Eckert J 2006 Scr. Mater. 54 835
[29] Medeiros B B, Medeiros M M, Fornell J, Sort J, Baró M D and Jorge A M 2015 J. Non-Cryst. Solids 425 103
[30] Aliaga L C R, Jordina F B, Suriñach S, Baró M D, Kiminami C S, Bolfarini C, Botta W J and Sort Viñas J 2013 J. Mater. Res. 28 2740
[31] Huang Y, Chiu Y L, Shen J, Chen J J J and Sun J 2009 J. Alloys Compd. 479 121
[32] Fornell J, González S, Rossinyol E, Suriñach S, Baró M D, Louzguine-Luzgin D V, Perepezko J H, Sort J and Inoue A 2010 Acta Mater. 58 6256
[33] Bhatt J, Kumar S, Dong C and Murty B S 2007 Mater. Sci. Eng.: A 458 290
[34] Leyland A and Matthews A 2000 Wear 246 1
[35] Rebholz C, Leyland A, Schneider J M, Voevodin A A and Matthews A 1999 Surf. Coat. Technol. 120-121 412
[36] Musil J, Kunc F, Zeman H and Pola ′kova H 2002 Surf. Coat. Technol. 154 304
[37] Kim J J, Choi Y, Suresh S and Argon A S 2002 Science 295 654
[38] Qiao J C and Pelletier J M 2014 J. Alloys Compd. 589 263
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[4] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[5] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[6] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[7] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[8] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[9] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[10] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[11] Weakening effect of plastic yielding inception in thin hard coating systems
Xiao Huang(黄啸), Shujun Zhou(周述军), and Tianmin Shao(邵天敏). Chin. Phys. B, 2021, 30(3): 038104.
[12] Dislocation slip behaviors in high-quality bulk GaN investigated by nanoindentation
Kai-Heng Shao(邵凯恒), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(11): 116104.
[13] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[14] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[15] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
No Suggested Reading articles found!