Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 066401    DOI: 10.1088/1674-1056/abd92c
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process

Danhong Li(李丹虹)1,†, Changyong Jiang(江昌勇)1, Hui Li(栗慧)1, and Mahander Pandey2,‡
1 Changzhou Institute of Technology, Changzhou 213000, China;
2 Department of Materials Science and Metallurgical Engineering, Heydarabad 502258, India
Abstract  The role of the microalloying process in relaxation behavior and crystallization evolution of Zr20Cu20Ni20Ti20Hf20 high entropy bulk metallic glass (HEBMG) was investigated. We selected Al and Nb elements as minor elements, which led to the negative and positive effects on the heat of mixing in the master HEBMG composition, respectively. According to the results, both elements intensified β relaxation in the structure; however, α relaxation remained stable. By using different frequencies in dynamic mechanical analysis, it was revealed that the activation energy of β relaxation for the Nb-added sample was much higher, which was due to the creation of significant structural heterogeneity under the microalloying process. Moreover, it was found that Nb addition led to a diversity in crystallization stages at the supercooled liquid region. It was suggested that the severe structural heterogeneity in the Nb-added sample provided multiple energy-level sites in the structure for enhancing the crystallization stages.
Keywords:  metallic glasses      disordered structures      amorphous materials      relaxation  
Received:  13 September 2020      Revised:  13 December 2020      Accepted manuscript online:  07 January 2021
PACS:  64.70.pe (Metallic glasses)  
Corresponding Authors:  Danhong Li, Mahander Pandey     E-mail:  lidh@czust.edu.cn;Pandey.mahander1@gmail.com

Cite this article: 

Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process 2021 Chin. Phys. B 30 066401

[1] Makarov A S, Goncharova E V, Afonin G V, Qiao J C, Kobelev N P and Khonik V A 2020 JETP Lett. 111 586
[2] Kim J, Oh H S, Kim J, Ryu C W, Lee G W, Chang H J and Park E S 2018 Acta Mater. 155 350
[3] Gong P, Wang S, Li F and Wang X 2018 Metall. Mater. Trans. A 49 2918
[4] Yang K, Fan X, Li B, Li Y, Wang X and Xu X 2018 J. Therm. Anal. Calorim. 132 979
[5] Xing Q W and Zhang Y 2017 Chin. Phys. B 26 18104
[6] Cao D, Wu Y, Li H X, Liu X J, Wang H, Wang X Z and Lu Z P 2018 Intermetallics 99 44
[7] Du Y, Zhou Q, Ren Y, Kuang W, Han W, Zhang S, Zhai H and Wang H 2018 J. Alloys Compd. 762 422
[8] Zhao S, Wang P, Cheng X, Zhang Y, Wen Z, Zhang Q, Yao K F, Chen N and Wang W H 2019 Sci. China Mater. 62 907
[9] Tong Y, Qiao J C, Zhang C, Pelletier J M and Yao Y 2016 J. Non. Cryst. Solids 452 57
[10] Cao J W, Han J G, Guo Z H, Zhao W B, Guo Y Q, Xia Z H and Qiao J W 2016 Mater. Sci. Eng. A 673 141
[11] Zhou Q, Du Y, Han W, Ren Y, Zhai H and Wang H 2019 Scr. Mater. 164 121
[12] Wang X, Gong P, Deng L, Jin J, Wang S and Zhou P 2017 J. Non. Cryst. Solids 470 27
[13] Fang Q, Yi M, Li J, Liu B and Huang Z 2018 Appl. Surf. Sci. 443 122
[14] Wu K, Liu C, Li Q, Huo J, Li M, Chang C and Sun Y 2019 J. Magn. Magn. Mater. 489 165404
[15] Li C, Li Q, Li M, Chang C, Li H, Dong Y and Sun Y 2019 J. Alloys Compd. 791 947
[16] Duan Y J, Qiao J C, Crespo D, Goncharova E V, Makarov A S, Afonin G V and Khonik V A 2020 J. Alloys Compd. 830 154564
[17] Gu J L, Luan H W, Zhao S F, Bu H T, Si J J, Shao Y and Yao K F 2020 Mater. Sci. Eng. A 786 139417
[18] Yin H, Huang Y, Daisenberg D, Xue P, Jiang S, Ru W, Jiang S, Bao Y, Bian X, Tong X, Shen H and Sun J 2019 Scr. Mater. 163 29
[19] Wada T, Jiang J, Yubuta K, Kato H and Takeuchi A 2019 Materialia 7 100372
[20] Tong Y, Qiao J C, Pelletier J M and Yao Y 2020 J. Alloys Compd. 820 153119
[21] Jin J, Li F, Yin G, Wang X and Gong P 2020 Thermochim. Acta 690 178650
[22] Bizhanova G, Li F, Ma Y, Gong P and Wang X 2019 J. Alloys Compd. 779 474
[23] Wang X, Dai W, Zhang M, Gong P and Li N 2018 J. Mater. Sci. Technol. 34 2006
[24] Chen C, Wong K, Krishnan R P, Zhifeng L, Yu D, Lu Z and Chathoth S M 2019 J. Mater. Sci. Technol. 35 44
[25] Tong Y, Qiao J C, Pelletier J M and Yao Y 2020 Intermetallics 119 106726
[26] Chen F C, Dai F P, Yang X Y, Ruan Y and Wei B B 2020 Chin. Phys. B 29 066401
[27] Zong H T, Ma M Z, Zhang X Y, Qi L, Li G, Jing Q and Liu R P 2011 Chin. Phys. Lett. 28 36103
[28] Samavatian M, Gholamipour R and Samavatian V 2021 Comput. Mater. Sci. 186 110025
[29] Wu S Y, Wei S H, Guo G Q, Wang J G and Yang L 2016 Sci. Rep. 6 38098
[30] Samavatian M, Gholamipour R, Samavatian V and Farahani F 2019 Mater. Res. Express 6 065202
[31] Li M, Guan H, Yang S, Ma X and Li Q 2020 Mater. Sci. Eng. A 140542
[32] Jiang W and Zhang B 2020 J. Appl. Phys. 127 115104
[33] Zhu F, Nguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K and Chen M W 2016 Nat. Commun. 7 11516
[34] Liu Y H, Fujita T, Aji D P B, Matsuura M and Chen M W 2014 Nat. Commun. 5 3238
[35] Qiao J C, Wang Q, Crespo D, Yang Y and Pelletier J M 2017 Chin. Phys. B 26 16402
[36] Hubek R, Seleznev M, Binkowski I, Peterlechner M, Divinski S V and Wilde G 2018 J. Appl. Phys. 124 225103
[37] Zhai H, Wang H and Liu F 2017 Trans. Nonferrous Met. Soc. China 27 363
[38] Zhu J, Yang M, Wang C, Yang S, Han J, Xie G and Liu X 2019 J. Alloys Compd. 781 8
[39] Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y and Yang Y 2019 Prog. Mater. Sci. 104 250
[40] Liu M, Qiao J, Hao Q, Chen Y, Yao Y, Crespo D and Pelletier J M 2019 Metals 9 1013
[41] Hao Q, Jia W Y and Qiao J C 2020 J. Non. Cryst. Solids 546 120266
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Effect of conical intersection of benzene on non-adiabatic dynamics
Duo-Duo Li(李多多) and Song Zhang(张嵩). Chin. Phys. B, 2022, 31(8): 083103.
[4] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[5] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[6] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[7] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[8] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[9] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[10] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[11] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[12] Accurate prediction method for the microstructure of amorphous alloys without non-metallic elements
Wei Zhao(赵伟), Jia-Lin Cheng(成家林), Gong Li(李工), and Xin Wang(王辛). Chin. Phys. B, 2021, 30(11): 116103.
[13] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[14] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[15] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
No Suggested Reading articles found!