CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Nonmonotonic anomalous Hall effect and anisotropic magnetoresistance in SrRuO3/PbZr0.52Ti0.48O3 heterostructures |
Zhen-Li Wang(王振礼)1, Chao-Yang Kang(康朝阳)1, Cai-Hong Jia(贾彩虹)1, Hai-Zhong Guo(郭海中)2,†, and Wei-Feng Zhang(张伟风)1,‡ |
1 Center for Topological Functional Materials, Henan University, Kaifeng 475004, China; 2 Key Laboratory of Material Physics(Ministry of Education), School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China |
|
|
Abstract We fabricate SrRuO3/PbZr0.52Ti0.48O3 heterostructures each with an in-plane tensile-strained SrRuO3 layer and investigate the effect of an applied electric field on anomalous Hall effect. The four-fold symmetry of anisotropic magnetoresistance and the nonmonotonic variation of anomalous Hall resistivity are observed. By applying positive electric field or negative electric field, the intersecting hump-like feature is suppressed or enhanced, respectively. The sign and magnitude of the anomalous Hall conductivity can be effectively controlled with an electric field under a high magnetic field. The electric-field-modulated anomalous Hall effect is associated with the magnetization rotation in SrRuO3. The experimental results are helpful in modulating the magnetization rotation in spintronic devices based on SrRuO3 heterostructures.
|
Received: 20 February 2023
Revised: 04 April 2023
Accepted manuscript online: 17 April 2023
|
PACS:
|
73.43.-f
|
(Quantum Hall effects)
|
|
73.43.Qt
|
(Magnetoresistance)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974099), the Intelligence Introduction Plan of Henan Province, China in 2021 (Grant No. CXJD2021008), the Plan for Leading Talent of Fundamental Research of the Central China in 2020, and the Key Scientific Research Project of Colleges and Universities in Henan Province, China (Grant No. 21A140005). |
Corresponding Authors:
Hai-Zhong Guo, Wei-Feng Zhang
E-mail: hguo@zzu.edu.cn;wfzhang@henu.edu.cn
|
Cite this article:
Zhen-Li Wang(王振礼), Chao-Yang Kang(康朝阳), Cai-Hong Jia(贾彩虹), Hai-Zhong Guo(郭海中), and Wei-Feng Zhang(张伟风) Nonmonotonic anomalous Hall effect and anisotropic magnetoresistance in SrRuO3/PbZr0.52Ti0.48O3 heterostructures 2023 Chin. Phys. B 32 107303
|
[1] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [2] Bruno P, Dugaev V K and Taillefumier M 2004 Phys. Rev. Lett. 93 096806 [3] Jiang W, Zhang X, Yu G, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis S G 2017 Nat. Phys. 13 162 [4] Shi Z L, Charles R, Cristian D B and Avadh S 2013 Phys. Rev. Lett. 110 207202 [5] Itoh S, Endoh Y, Yokoo T, Ibuka S, Park J G, Kaneko Y, Takahashi K S, Tokura Y and Nagaosa N 2016 Nat. Commun. 7 11788 [6] Zhong S, Orenstein J and Moore J E 2015 Phys. Rev. Lett. 115 117403 [7] Everschor-Sitte K and Sitte M 2014 J. Appl. Phys. 115 172602 [8] Wang G Q, Sun Z H, Si X Y and Jia S 2020 Chin. Phys. B 29 077503 [9] Zhang D, Wang Y, Lu N, Sui X, Xu Y, Yu P and Xue Q K 2019 Phys. Rev. B 100 060403 [10] Wang Q, Yin Q W and Lei H C 2020 Chin. Phys B 29 017101 [11] Fang Z, Nagaosa N, Takahashi, K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y and Terakura K 2003 Science 302 92 [12] Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E G and Niu Q 2004 Phys. Rev. Lett. 92 037204 [13] Haldane F D M 2004 Phys. Rev. Lett. 93 206602 [14] Lu W, Song W, Yang P, Ding J, Chow G M and Chen J 2015 Sci. Rep. 5 10245 [15] Lee B W and Jung C U 2010 Appl. Phys. Lett. 96 102507 [16] Ziese M, Vrejoiu I and Hesse D 2010 Phys. Rev. B 81 184418 [17] Zayak A T, Huang X, Neaton J B and Rabe K M 2008 Phys. Rev. B 77 214410 [18] Xu R, Huang J, Barnard E S, Hong S S, Singh P, Wong E K, Jansen T, Harbola V, Xiao J, Wang B Y, Crossley S, Lu D, Liu S and Hwang H Y 2020 Nat. Commun. 11 3141 [19] Wu L, Wen F, Fu Y, Wilson J H, Liu X, Zhang Y, Vasiukov D M, Kareev M S, Pixley J H and Chakhalian J 2020 Phys. Rev. B 102 220406 [20] Jia Q X, Foltyn S R, Arendt P N, Groves J R, Holesinger T G, Hawley M E and Lu P 2002 Appl. Phys. Lett. 81 4571 [21] Ohuchi Y, Matsuno J, Ogawa N, Kozuka Y, Uchida M, Tokura Y and Kawasaki M 2018 Nat. Commun. 9 213 [22] Qin Q, Liu L, Lin W, Shu X, Xie Q, Lim Z, Li C, He S, Chow G M and Chen J 2019 Adv. Mater. 31 1807008 [23] Lu J, Si L, Zhang Q, Tian C, Liu X, Song C, Dong S, Wang J, Cheng S, Qu L, Zhang K, Shi Y, Huang H, Zhu T, Mi W, Zhong Z, Gu L, Held K, Wang L and Zhang J 2021 Adv. Mater. 33 2102525 [24] Wang L, Feng Q, Kim Y, Kim R, Lee K H, Pollard S D, Shin Y J, Zhou H, Peng W, Lee D, Meng W, Yang H, Han J H, Kim M, Lu Q and Noh T W 2018 Nat. Mater. 17 1087 [25] Yao X K, Wang C, Guo E J, Wang X Y, Li X M, Liao L, Zhou Y, Lin S, Jin Q, Ge C, He M, Bai X D, Gao P, Yang G Z and Jin K J 2022 ACS Appl. Mater. Interfaces 14 6194 [26] Kan D, Kobayashi K and Shimakawa Y 2020 Phys. Rev. B 101 144405 [27] Ren Z Y, Shao F, Liu P F, Wang M X, Chen J K, Meng K K, Xu X G, Miao J and Jiang Y 2020 Phys. Rev. Appl. 13 024044 [28] Mizuno H, Yamada K T, Kan D, Moriyama T, Shimakawa Y and Ono T 2017 Phys. Rev. B 96 214422 [29] Tian D, Liu Z, Shen S, Li Z, Zhou Y, Liu H, Chen H and Yu P 2021 Proc. Natl. Acad. Sci. USA 118 e2101946118 [30] Gao Z M, Huang X S, Li P, Wang L F, Wei L, Zhang W F and Guo H Z 2018 Adv. Mater. Interfaces 5 1701565 [31] Zayak A T, Huang X, Neaton J B and Rabe K M 2006 Phys. Rev. B 74 094104 [32] Felner I, Nomura K and Nowik I 2006 Phys. Rev. B 73 064401 [33] Gausepohl S C, Lee M, Char K, Rao R A and Eom C B 1995 Phys. Rev. B 52 3459 [34] Wakabayashi Y K, Kaneta-Takada S, Krockenberger Y, Taniyasu Y and Yamamoto H 2021 ACS Appl. Electron. Mater. 3 2712 [35] Kan D, Aso R, Kurata H and Shimakawa Y 2013 J. Appl. Phys. 113 173912 [36] Herklotz A, Kataja M, Nenkov K, Biegalski M D, Christen H M, Deneke C, Schultz L and Doerr K 2013 Phys. Rev. B 88 144412 [37] Xiao X, Li J X, Ding Z and Wu Y Z 2015 J. Appl. Phys. 118 203905 [38] Rout P K, Agireen I, Maniv E, Goldstein M and Dagan Y 2017 Phys. Rev. B 95 241107 [39] Gong J L, Zheng D X, Li D, Jin C and Bai H L 2018 J. Alloys Compd. 735 1152 [40] Camley R E and Barnas J 1989 Phys. Rev. Lett. 63 664 [41] Rushforth A W, De Ranieri E, Zemen J, Wunderlich J, Edmonds K W, King C S, Ahmad E, Campion R P, Foxon C T, Gallagher B L, Vyborny K, Kucera J and Jungwirth T 2008 Phys. Rev. B 78 085314 [42] Li P, Jiang E Y and Bai H L 2010 Appl. Phys. Lett. 96 092502 [43] Chen X G, Yang J B, Yang Y B, Wang C S, Liu S Q, Zhang Y, Han J Z and Yang Y C 2014 J. Appl. Phys. 115 043904 [44] Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C B, Blank D H A and Beasley M R 2012 Rev. Mod. Phys. 84 253 [45] Ding J J, Wu S B, Yang X F and Zhu T 2015 Chin. Phys. B 24 027201 [46] Matsuno J, Ogawa N, Yasuda K, Kagawa F, Koshibae W, Nagaosa N, Tokura Y and Kawasaki M 2016 Sci. Adv. 2 e1600304 [47] Nagaosa N, Sinova J, Onoda S and MacDonald A H 2010 Rev. Mod. Phys. 82 1539 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|