Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107304    DOI: 10.1088/1674-1056/ace314
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strong anharmonicity-assisted low lattice thermal conductivities and high thermoelectric performance in double-anion Mo2AB2 (A = S, Se, Te; B=Cl, Br, I) semiconductors

Haijun Liao(廖海俊)1, Le Huang(黄乐)1,2,†, Xing Xie(谢兴)4, Huafeng Dong(董华锋)2,3, Fugen Wu(吴福根)1, Zhipeng Sun(孙志鹏)1,‡, and Jingbo Li(李京波)5,§
1 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
2 Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China;
3 School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
4 School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, Changsha 410083, China;
5 College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  The thermoelectric properties of layered Mo$_{2}AB_{2}$ ($A={\rm S}$, Se, Te; $B={\rm Cl}$, Br, I) materials are systematically investigated by first-principles approach. Soft transverse acoustic modes and direct Mo d-Mo d couplings give rise to strong anharmonicities and low lattice thermal conductivities. The double anions with distinctly different electronegativities of Mo$_{2}AB_{2}$ monolayers can reduce the correlation between electron transport and phonon scattering, and further benefit much to their good thermoelectric properties. Thermoelectric properties of these Mo$_{2}AB_{2}$ monolayers exhibit obvious anisotropies due to the direction-dependent chemical bondings and transport properties. Furthermore, their thermoelectric properties strongly depend on carrier type (n-type or p-type), carrier concentration and temperature. It is found that n-type Mo$_{2}AB_{2}$ monolayers can be excellent thermoelectric materials with high electric conductivity, $\sigma $, and figures of merit, $ZT$. Choosing the types of $A$ and $B$ anions of Mo$_{2}AB_{2}$ is an effective strategy to optimize their thermoelectric performance. These results provide rigorous understanding on thermoelectric properties of double-anions compounds and important guidance for achieving high thermoelectric performance in multi-anion compounds.
Keywords:  thermoelectricity      anharmonicity      lattice thermal conductivity      anisotropy      first-principles calculations  
Received:  27 March 2023      Revised:  07 June 2023      Accepted manuscript online:  30 June 2023
PACS:  73.50.Lw (Thermoelectric effects)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
Fund: Project supported by the Science and Technology Program of Guangzhou City (Grant Nos. 202102020389 and 202103030001), the Fund of Guangdong Provincial Key Laboratory of Information Photonics Technology (Grant No. 2020B121201011), and the National Natural Science Foundation of China (Grant Nos. 11804058 and 12064027). We also thank the Center of Campus Network & Modern Educational Technology, Guangdong University of Technology, Guangdong, China, for providing computational resources and technical support for this work.
Corresponding Authors:  Le Huang, Zhipeng Sun, Jingbo Li     E-mail:  huangle@gdut.edu.cn;zpsunxj@163.com;jbli@zju.edu.cn

Cite this article: 

Haijun Liao(廖海俊), Le Huang(黄乐), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Zhipeng Sun(孙志鹏), and Jingbo Li(李京波) Strong anharmonicity-assisted low lattice thermal conductivities and high thermoelectric performance in double-anion Mo2AB2 (A = S, Se, Te; B=Cl, Br, I) semiconductors 2023 Chin. Phys. B 32 107304

[1] Shi X L, Chen W Y, Zhang T, Zou J and Chen Z G 2021 Energ. Environ. Sci. 14 729
[2] Haque M A, Kee S, Villalva D R, Ong W L and Baran D 2020 Adv. Sci. 7 1903389
[3] Li D L, Gong Y N, Chen Y X, Lin J M, Khan Q, Zhang Y P, Li Y, Zhang H and Xie H P 2020 Nanomicro. Lett. 12 36
[4] Beretta D, Neophytou N, Hodges J M, Kanatzidis M G, Narducci D, Martin-Gonzalez M, Beekman M, Balke B, Cerretti G, Tremel W, Zevalkink A, Hofmann A I, Müller C, Dörling B, Campoy-Quiles M and Caironi M 2019 Mater. Sci. Eng. R Rep. 138 100501
[5] Zevalkink A, Smiadak D M, Blackburn J L, Ferguson A J, Chabinyc M L, Delaire O, Wang J, Kovnir K, Martin J, Schelhas L T, Sparks T D, Kang S D, Dylla M T, Snyder G J, Ortiz B R and Toberer E S 2018 Appl. Phys. Rev. 5 021303
[6] Vu T V, Nguyen C V, Phuc H V, Lavrentyev A A, Khyzhun O Y, Hieu N V, Obeid M M, Rai D P, Tong H D and Hieu N N 2021 Phys. Rev. B 103 085422
[7] Li W, Zheng L L, Ge B H, Lin S Q, Zhang X Y, Chen Z W, Chang Y J and Pei Y Z 2017 Adv. Mater. 29 1605887
[8] Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J and Uher C 2012 Phys. Rev. Lett. 108 166601
[9] Pei Y Z, Wang H and Snyder G J 2012 Adv. Mater. 24 6125
[10] Zhai J Z, Wang T, Wang H C, Su W B, Wang X, Chen T T and Wang C L 2018 Chin. Phys. B 27 047306
[11] Sun M, Tang G W, Wang H F, Zhang T, Zhang P Y, Han B, Yang M, Zhang H, Chen Y C, Chen J, Zhu Q F, Li J Y, Chen D D, Gan J L, Qian Qi and Yang Z M 2022 Adv. Mater. 34 2202942
[12] Yang Q X, Lyu T, Nan B H, Tie J and Xu G Y 2022 ACS Appl. Mater. Interfaces 14 32236
[13] Fan Y J, Peng K L, Huang Y L, Liao H J, Huang Z Y, Li J, Yan Y C, Gu H S, Zhang B, Hu Y M, Lu X and Zhou X Y 2022 Rare Met. 41 3466
[14] Wang H, Chen J, Lu T Q, Zhu K, Li S, Liu J and Zhao H Z 2018 Chin. Phys. B 27 047212
[15] Zhao K P, Zhu C X, Qiu P F, Blichfeld A B, Eikeland E, Ren D, Iversen B B, Xu F F, Shi X and Chen L D 2017 Nano Energy 42 43
[16] Adam A M, Diab A K, El-Hadek M A, Sayed A O and Ibrahim E M M 2022 J. Alloys Compd. 920 165952
[17] He W, Wang D, Wu H, Xiao Y, Zhang Y, He D, Feng Y, Hao Y J, Dong J F, Chetty R, Hao L, Chen D, Qin J, Yang Q, Li X, Song J M, Zhu Y, Xu W, Niu C, Li X, Wang G, Liu C, Ohta M, Pennycook S J, He J, Li J F and Zhao L D 2019 Science 365 1418
[18] Wang R F, Dai L, Yan Y C, Peng K L, Lu X, Zhou X Y and Wang G Y 2018 Chin. Phys. B 27 067201
[19] Ogunbunmi M O, Baranets S and Bobev S 2022 Inorg. Chem. 61 10888
[20] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[21] Yang K K, Xiao J, Ren Z H, Wei Z M, Luo J W, Wei S H and Deng H X 2021 J. Phys. Chem. Lett. 12 7832
[22] Dolyniuk J A, Owens-Baird B, Wang J, Zaikina J V and Kovnir K 2016 Mater. Sci. Eng. R Rep. 108 1
[23] Ying P J, Li X, Wang Y C, Yang J, Fu C G, Zhang W Q, Zhao X B and Zhu T J 2017 Adv. Funct. Mater. 27 1604145
[24] Qiu W J, Xi L L, Wei P, Ke X Z, Yang J H and Zhang W Q 2014 Proc. Natl. Acad. Sci. USA 111 15031
[25] Wan B, Gao Z B, Huang X C, Yang Y Q, Chen L C, Wang Q Q, Fang C, Shen W X, Zhang Y W, Ma H A, Gou H Y, Jia X P and Zhang Z F 2022 ACS Appl. Energy Mater. 5 9549
[26] Pal K, Xia Y, He J G and Wolverton C 2019 Phys. Rev. Mater. 3 085402
[27] Wang N, Li M L, Xiao H Y, Gong H F, Liu Z J, Zu X T and Qiao L 2019 Phys. Chem. Chem. Phys. 21 15097
[28] Hor Y S, Richardella A, Roushan P, Xia Y, Checkelsky J G, Yazdani A, Hasan M Z, Ong N P and Cava R J 2009 Phys. Rev. B 79 195208
[29] Qi H B, Sun Z H, Shen C, Chang Z, Wang Z S, Wang X P, Zhang M and Wang N 2022 ACS Appl. Energy Mater. 5 7371
[30] Fan Q, Yang J H, Qi H B, Yu L F, Qin G Z, Sun Z H, Shen C and Wang N 2022 Phys. Chem. Chem. Phys. 24 11268
[31] Chang Z, Liu K, Sun Z H, Yuan K P, Cheng S W, Gao Y F, Zhang X L, Shen C, Zhang H B, Wang N and Tang D W 2022 Int. J. Extrem. Manuf. 4 025001
[32] Liao H J, Xiao Y, Yang Y B, Huang L, Dong H F and Wu F G 2022 Phys. Rev. B 105 195427
[33] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Deringer V L, Tchougreeff A L and Dronskowski R 2011 J. Phys. Chem. A 115 5461
[37] Nelson R, Ertural C, George J, Deringer V L, Hautier G and Dronskowski R 2020 J. Comput. Chem. 41 1931
[38] Heyd J and Scuseria G E 2004 J. Chem. Phys. 121 1187
[39] Jia W L, Cao Z Y, Wang L, Fu J Y, Chi X B, Gao W G and Wang L W 2013 Comput. Phys. Commun. 184 9
[40] Jia W L, Fu J Y, Cao Z Y, Wang L, Chi X B, Gao W G and Wang L W 2013 J. Comput. Phys. 251 102
[41] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[42] Chaput L, Togo A, Tanaka I and Hug G 2011 Phys. Rev. B 84 094302
[43] Togo A and Tanaka I 2015 Scripta Materialia 108 1
[44] Li W, Carrete J, Katcho A N and Mingo N 2014 Comput. Phys. Commun. 185 1747
[45] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[46] Tan G J, Shi F Y, Doak J W, Sun H, Zhao L D, Wang P L, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2015 Energ. Environ. Sci. 8 267
[47] Pei Y Z, Lalonde A, Iwanaga S and Snyder G J 2011 Energ. Environ. Sci. 4 2085
[48] Ahmad S and Mahanti S D 2010 Phys. Rev. B 81 165203
[1] Hole density dependent magnetic structure and anisotropy in Fe-pnictide superconductor
Yuan-Fang Yue(岳远放), Zhong-Bing Huang(黄忠兵), Huan Li(黎欢),Xing Ming(明 星), and Xiao-Jun Zheng(郑晓军). Chin. Phys. B, 2023, 32(9): 097403.
[2] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[3] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[4] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
[5] Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices
Xin-Yi Cai(蔡心怡), Zhi-Hua Chen(陈志华), Hang-Xiao Yang(杨航霄), Xin-Yan He(何鑫岩), Zhen-Zhen Chen(陈珍珍), Ming-Min Zhu(朱明敏), Yang Qiu(邱阳), Guo-Liang Yu(郁国良), and Hao-Miao Zhou(周浩淼). Chin. Phys. B, 2023, 32(6): 067502.
[6] Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization
Yuan Yuan(袁源), Lu-Jun Wei(魏陆军), Yu Lu(卢羽), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Jia-Rui Chen(陈家瑞), Biao You(游彪), Wei Zhang(张维), Di Wu(吴镝), and Jun Du(杜军). Chin. Phys. B, 2023, 32(6): 067505.
[7] Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(6): 067201.
[8] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[9] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[10] Bending sensor based on flexible spin valve
L I Naumova, R S Zavornitsyn, M A Milyaev, N G Bebenin, A Y Pavlova, M V Makarova, I K Maksimova, V V Proglyado, A A Zakharov, and V V Ustinov. Chin. Phys. B, 2023, 32(5): 057502.
[11] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[12] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[13] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[14] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
[15] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
No Suggested Reading articles found!