CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Strong anharmonicity-assisted low lattice thermal conductivities and high thermoelectric performance in double-anion Mo2AB2 (A = S, Se, Te; B=Cl, Br, I) semiconductors |
Haijun Liao(廖海俊)1, Le Huang(黄乐)1,2,†, Xing Xie(谢兴)4, Huafeng Dong(董华锋)2,3, Fugen Wu(吴福根)1, Zhipeng Sun(孙志鹏)1,‡, and Jingbo Li(李京波)5,§ |
1 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; 2 Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China; 3 School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; 4 School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, Changsha 410083, China; 5 College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The thermoelectric properties of layered Mo$_{2}AB_{2}$ ($A={\rm S}$, Se, Te; $B={\rm Cl}$, Br, I) materials are systematically investigated by first-principles approach. Soft transverse acoustic modes and direct Mo d-Mo d couplings give rise to strong anharmonicities and low lattice thermal conductivities. The double anions with distinctly different electronegativities of Mo$_{2}AB_{2}$ monolayers can reduce the correlation between electron transport and phonon scattering, and further benefit much to their good thermoelectric properties. Thermoelectric properties of these Mo$_{2}AB_{2}$ monolayers exhibit obvious anisotropies due to the direction-dependent chemical bondings and transport properties. Furthermore, their thermoelectric properties strongly depend on carrier type (n-type or p-type), carrier concentration and temperature. It is found that n-type Mo$_{2}AB_{2}$ monolayers can be excellent thermoelectric materials with high electric conductivity, $\sigma $, and figures of merit, $ZT$. Choosing the types of $A$ and $B$ anions of Mo$_{2}AB_{2}$ is an effective strategy to optimize their thermoelectric performance. These results provide rigorous understanding on thermoelectric properties of double-anions compounds and important guidance for achieving high thermoelectric performance in multi-anion compounds.
|
Received: 27 March 2023
Revised: 07 June 2023
Accepted manuscript online: 30 June 2023
|
PACS:
|
73.50.Lw
|
(Thermoelectric effects)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
Fund: Project supported by the Science and Technology Program of Guangzhou City (Grant Nos. 202102020389 and 202103030001), the Fund of Guangdong Provincial Key Laboratory of Information Photonics Technology (Grant No. 2020B121201011), and the National Natural Science Foundation of China (Grant Nos. 11804058 and 12064027). We also thank the Center of Campus Network & Modern Educational Technology, Guangdong University of Technology, Guangdong, China, for providing computational resources and technical support for this work. |
Corresponding Authors:
Le Huang, Zhipeng Sun, Jingbo Li
E-mail: huangle@gdut.edu.cn;zpsunxj@163.com;jbli@zju.edu.cn
|
Cite this article:
Haijun Liao(廖海俊), Le Huang(黄乐), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Zhipeng Sun(孙志鹏), and Jingbo Li(李京波) Strong anharmonicity-assisted low lattice thermal conductivities and high thermoelectric performance in double-anion Mo2AB2 (A = S, Se, Te; B=Cl, Br, I) semiconductors 2023 Chin. Phys. B 32 107304
|
[1] Shi X L, Chen W Y, Zhang T, Zou J and Chen Z G 2021 Energ. Environ. Sci. 14 729 [2] Haque M A, Kee S, Villalva D R, Ong W L and Baran D 2020 Adv. Sci. 7 1903389 [3] Li D L, Gong Y N, Chen Y X, Lin J M, Khan Q, Zhang Y P, Li Y, Zhang H and Xie H P 2020 Nanomicro. Lett. 12 36 [4] Beretta D, Neophytou N, Hodges J M, Kanatzidis M G, Narducci D, Martin-Gonzalez M, Beekman M, Balke B, Cerretti G, Tremel W, Zevalkink A, Hofmann A I, Müller C, Dörling B, Campoy-Quiles M and Caironi M 2019 Mater. Sci. Eng. R Rep. 138 100501 [5] Zevalkink A, Smiadak D M, Blackburn J L, Ferguson A J, Chabinyc M L, Delaire O, Wang J, Kovnir K, Martin J, Schelhas L T, Sparks T D, Kang S D, Dylla M T, Snyder G J, Ortiz B R and Toberer E S 2018 Appl. Phys. Rev. 5 021303 [6] Vu T V, Nguyen C V, Phuc H V, Lavrentyev A A, Khyzhun O Y, Hieu N V, Obeid M M, Rai D P, Tong H D and Hieu N N 2021 Phys. Rev. B 103 085422 [7] Li W, Zheng L L, Ge B H, Lin S Q, Zhang X Y, Chen Z W, Chang Y J and Pei Y Z 2017 Adv. Mater. 29 1605887 [8] Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J and Uher C 2012 Phys. Rev. Lett. 108 166601 [9] Pei Y Z, Wang H and Snyder G J 2012 Adv. Mater. 24 6125 [10] Zhai J Z, Wang T, Wang H C, Su W B, Wang X, Chen T T and Wang C L 2018 Chin. Phys. B 27 047306 [11] Sun M, Tang G W, Wang H F, Zhang T, Zhang P Y, Han B, Yang M, Zhang H, Chen Y C, Chen J, Zhu Q F, Li J Y, Chen D D, Gan J L, Qian Qi and Yang Z M 2022 Adv. Mater. 34 2202942 [12] Yang Q X, Lyu T, Nan B H, Tie J and Xu G Y 2022 ACS Appl. Mater. Interfaces 14 32236 [13] Fan Y J, Peng K L, Huang Y L, Liao H J, Huang Z Y, Li J, Yan Y C, Gu H S, Zhang B, Hu Y M, Lu X and Zhou X Y 2022 Rare Met. 41 3466 [14] Wang H, Chen J, Lu T Q, Zhu K, Li S, Liu J and Zhao H Z 2018 Chin. Phys. B 27 047212 [15] Zhao K P, Zhu C X, Qiu P F, Blichfeld A B, Eikeland E, Ren D, Iversen B B, Xu F F, Shi X and Chen L D 2017 Nano Energy 42 43 [16] Adam A M, Diab A K, El-Hadek M A, Sayed A O and Ibrahim E M M 2022 J. Alloys Compd. 920 165952 [17] He W, Wang D, Wu H, Xiao Y, Zhang Y, He D, Feng Y, Hao Y J, Dong J F, Chetty R, Hao L, Chen D, Qin J, Yang Q, Li X, Song J M, Zhu Y, Xu W, Niu C, Li X, Wang G, Liu C, Ohta M, Pennycook S J, He J, Li J F and Zhao L D 2019 Science 365 1418 [18] Wang R F, Dai L, Yan Y C, Peng K L, Lu X, Zhou X Y and Wang G Y 2018 Chin. Phys. B 27 067201 [19] Ogunbunmi M O, Baranets S and Bobev S 2022 Inorg. Chem. 61 10888 [20] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 [21] Yang K K, Xiao J, Ren Z H, Wei Z M, Luo J W, Wei S H and Deng H X 2021 J. Phys. Chem. Lett. 12 7832 [22] Dolyniuk J A, Owens-Baird B, Wang J, Zaikina J V and Kovnir K 2016 Mater. Sci. Eng. R Rep. 108 1 [23] Ying P J, Li X, Wang Y C, Yang J, Fu C G, Zhang W Q, Zhao X B and Zhu T J 2017 Adv. Funct. Mater. 27 1604145 [24] Qiu W J, Xi L L, Wei P, Ke X Z, Yang J H and Zhang W Q 2014 Proc. Natl. Acad. Sci. USA 111 15031 [25] Wan B, Gao Z B, Huang X C, Yang Y Q, Chen L C, Wang Q Q, Fang C, Shen W X, Zhang Y W, Ma H A, Gou H Y, Jia X P and Zhang Z F 2022 ACS Appl. Energy Mater. 5 9549 [26] Pal K, Xia Y, He J G and Wolverton C 2019 Phys. Rev. Mater. 3 085402 [27] Wang N, Li M L, Xiao H Y, Gong H F, Liu Z J, Zu X T and Qiao L 2019 Phys. Chem. Chem. Phys. 21 15097 [28] Hor Y S, Richardella A, Roushan P, Xia Y, Checkelsky J G, Yazdani A, Hasan M Z, Ong N P and Cava R J 2009 Phys. Rev. B 79 195208 [29] Qi H B, Sun Z H, Shen C, Chang Z, Wang Z S, Wang X P, Zhang M and Wang N 2022 ACS Appl. Energy Mater. 5 7371 [30] Fan Q, Yang J H, Qi H B, Yu L F, Qin G Z, Sun Z H, Shen C and Wang N 2022 Phys. Chem. Chem. Phys. 24 11268 [31] Chang Z, Liu K, Sun Z H, Yuan K P, Cheng S W, Gao Y F, Zhang X L, Shen C, Zhang H B, Wang N and Tang D W 2022 Int. J. Extrem. Manuf. 4 025001 [32] Liao H J, Xiao Y, Yang Y B, Huang L, Dong H F and Wu F G 2022 Phys. Rev. B 105 195427 [33] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [36] Deringer V L, Tchougreeff A L and Dronskowski R 2011 J. Phys. Chem. A 115 5461 [37] Nelson R, Ertural C, George J, Deringer V L, Hautier G and Dronskowski R 2020 J. Comput. Chem. 41 1931 [38] Heyd J and Scuseria G E 2004 J. Chem. Phys. 121 1187 [39] Jia W L, Cao Z Y, Wang L, Fu J Y, Chi X B, Gao W G and Wang L W 2013 Comput. Phys. Commun. 184 9 [40] Jia W L, Fu J Y, Cao Z Y, Wang L, Chi X B, Gao W G and Wang L W 2013 J. Comput. Phys. 251 102 [41] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [42] Chaput L, Togo A, Tanaka I and Hug G 2011 Phys. Rev. B 84 094302 [43] Togo A and Tanaka I 2015 Scripta Materialia 108 1 [44] Li W, Carrete J, Katcho A N and Mingo N 2014 Comput. Phys. Commun. 185 1747 [45] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67 [46] Tan G J, Shi F Y, Doak J W, Sun H, Zhao L D, Wang P L, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2015 Energ. Environ. Sci. 8 267 [47] Pei Y Z, Lalonde A, Iwanaga S and Snyder G J 2011 Energ. Environ. Sci. 4 2085 [48] Ahmad S and Mahanti S D 2010 Phys. Rev. B 81 165203 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|