CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Doping tuned anomalous Hall effect in the van der Waals magnetic topological phases Mn(Sb1-xBix)4Te7 |
Xin Zhang(张鑫)1, Zhicheng Jiang(江志诚)2, Jian Yuan(袁健)1, Xiaofei Hou(侯骁飞)1, Xia Wang(王霞)3, Na Yu(余娜)3, Zhiqiang Zou(邹志强)3, Zhengtai Liu(刘正太)2,6,†, Wei Xia(夏威)1,5,‡, Zhenhai Yu(于振海)1, Dawei Shen(沈大伟)4, and Yanfeng Guo(郭艳峰)1,5 |
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China; 3 Analytical Instrumentation Center, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 4 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; 5 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China; 6 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The van der Waals (vdW) MnSb4Te7 is a newly synthesized antiferromagnetic (AFM) topological insulator hosting a robust axion insulator state irrelative to the specific spin structure. However, the intrinsic hole doped character of MnSb4Te7 makes the Fermi level far away from the Dirac point of about 180 meV, which is unfavorable for the exploration of exotic topological properties such as the quantum anomalous Hall effect (QAHE). To shift up the Fermi level close to the Dirac point, the strategy of partially replacing Sb with Bi as Mn(Sb1-xBix)4Te7 was tried and the magnetotransport properties, in particular, the anomalous Hall effect, were measured and analyzed. Through the electron doping, the anomalous Hall conductance σAH changes from negative to positive between x = 0.3 and 0.5, indicative of a possible topological transition. Besides, a charge neutrality point (CNP) also appears between x = 0.6 and 0.7. The results would be instructive for further understanding the interplay between nontrivial topological states and the magnetism, as well as for the exploration of exotic topological properties.
|
Received: 23 March 2023
Revised: 08 May 2023
Accepted manuscript online: 17 May 2023
|
PACS:
|
72.80.Ga
|
(Transition-metal compounds)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
Fund: Project supported by the Shanghai Science and Technology Innovation Action Plan (Grant No. 21JC1402000), the National Natural Science Foundation of China (Grant No. 12004405), the State Key Laboratory of Functional Materials for Informatics (Grant No. SKL2022), the Double FirstClass Initiative Fund of ShanghaiTech University, the Analytical Instrumentation Center (Grant No. SPST-AIC10112914), SPST, and ShanghaiTech University. W. Xia acknowledges the research fund from the State Key Laboratory of Surface Physics and Department of Physics of Fudan University (Grant No. KF2022_13). |
Corresponding Authors:
Zhengtai Liu, Wei Xia
E-mail: ztliu@mail.sim.ac.cn;xiawei2@shanghaitech.edu.cn
|
Cite this article:
Xin Zhang(张鑫), Zhicheng Jiang(江志诚), Jian Yuan(袁健), Xiaofei Hou(侯骁飞), Xia Wang(王霞),Na Yu(余娜), Zhiqiang Zou(邹志强), Zhengtai Liu(刘正太), Wei Xia(夏威),Zhenhai Yu(于振海), Dawei Shen(沈大伟), and Yanfeng Guo(郭艳峰) Doping tuned anomalous Hall effect in the van der Waals magnetic topological phases Mn(Sb1-xBix)4Te7 2023 Chin. Phys. B 32 097201
|
[1] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167 [2] Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, Vyazovskaya A Y, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M, Arnau A and Chulkov E V 2017 2D Mater. 4 025082 [3] Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Phys. Rev. Lett. 122 107202 [4] Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sanchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Buchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kissner K, Unzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A and Chulkov E V 2019 Nature 576 416 [5] Li J H, Wang C, Zhang Z T, Gu B L, Duan W H and Xu Y 2019 Phys. Rev. B 100 121103 [6] Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S and Wang Y Y 2020 Nat. Mater. 19 522 [7] Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801 [8] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895 [9] Hu C W, Ding L, Gordon K N, Ghosh B, Tien H J, Li H X, Linn A G, Lien S W, Huang C Y, Mackey S, Liu J Y, Reddy P V S, Singh B, Agarwal A, Bansil A, Song M, Li D S, Xu S Y, Lin H, Cao H B, Chang T R, Dessau D and Ni N 2020 Sci. Adv. 6 eaba4275 [10] Hu C W, Tanatar M A, Prozorov R and Ni N 2022 J. Phys. D: Appl. Phys. 55 054003 [11] Zhong H Y, Bao C H, Wang H, Li J H, Yin Z C, Xu Y, Duan W H, Xia T L and Zhou S Y 2021 Nano Lett. 21 6080 [12] Huan S C, Wang D H, Su H, Wang H Y, Wang X, Yu N, Zou Z Q, Zhang H J and Guo Y F 2021 Appl. Phys. Lett. 118 192105 [13] Huan S C, Zhang S A, Jiang Z C, Su H, Wang H Y, Zhang X, Yang Y C, Liu Z T, Wang X, Yu N, Zou Z Q, Shen D W, Liu J P and Guo Y F 2021 Phys. Rev. Lett. 126 246601 [14] Zhang X, Zhang S, Jiang Z, Huan S, Yang Y, Liu Z, Yang S, Jiao J, Xia W, Wang X, Yu N, Zou Z, Liu Y, Ma J, Shen D, Liu J and Guo Y 2021 arXiv: 2111.04973 [15] Shi G, Zhang M J, Yan D Y, Feng H L, Yang M, Shi Y G and Li Y Q 2020 Chin. Phys. Lett. 37 047301 [16] Ge W B, Sass P M, Yan J Q, Lee S H, Mao Z Q and Wu W D 2021 Phys. Rev. B 103 134403 [17] Yan D Y, Yang M, Song P B, Song Y T, Wang C X, Yi C J and Shi Y G 2021 Phys. Rev. B 103 224412 [18] Chen B, Wang D H, Jiang Z C, Zhang B, Cui S T, Guo J W, Xie H K, Zhang Y, Naveed M, Du Y, Wang X F, Zhang H J, Fei F C, Shen D W, Sun Z and Song F Q 2021 Phys. Rev. B 104 075134 [19] Hu C W, Lien S W, Feng E, Mackey S, Tien H J, Mazin I I, Cao H B, Chang T R and Ni N 2021 Phys. Rev. B 104 054422 [20] Guan Y D, Yan C H, Lee S H, Gui X, Ning W, Ning J L, Zhu Y L, Kothakonda M, Xu C Q, Ke X L, Sun J W, Xie W W, Yang S L and Mao Z Q 2022 Phys. Rev. Mater. 6 054203 [21] Shi M Z, Lei B, Zhu C S, Ma D H, Cui J H, Sun Z L, Ying J J and Chen X H 2019 Phys. Rev. B 100 155144 [22] Yu Z H, Chen X J, Xia W, Wang N N, Lv X, Liu X L, Su H, Li Z Y, Wu D S, Wu W, Liu Z Y, Zhao J G, Li M T, Li S J, Li X, Dong Z H, Zhou C Y, Zhang L L, Wang X, Yu N, Zou Z Q, Luo J L, Cheng J G, Wang L, Zhong Z C and Guo Y F 2022 arXiv: 2202.06016 [23] Yan J Q, Okamoto S, McGuire M A, May A F, McQueeney R J and Sales B C 2019 Phys. Rev. B 100 104409 [24] Lee S H, Graf D, Min L J, Zhu Y L, Yi H M, Ciocys S, Wang Y X, Choi E S, Basnet R, Fereidouni A, Wegner A, Zhao Y F, Verlinde K, He J Y, Redwing R, Gopalan V, Churchill H O H, Lanzara A, Samarth N, Chang C Z, Hu J and Mao Z Q 2021 Phys. Rev. X 11 031032 [25] Moon J, Kim J, Koirala N, Salehi M, Vanderbilt D and Oh S 2019 Nano Lett. 19 3409 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|