Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 097201    DOI: 10.1088/1674-1056/acd629
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Doping tuned anomalous Hall effect in the van der Waals magnetic topological phases Mn(Sb1-xBix)4Te7

Xin Zhang(张鑫)1, Zhicheng Jiang(江志诚)2, Jian Yuan(袁健)1, Xiaofei Hou(侯骁飞)1, Xia Wang(王霞)3, Na Yu(余娜)3, Zhiqiang Zou(邹志强)3, Zhengtai Liu(刘正太)2,6,†, Wei Xia(夏威)1,5,‡, Zhenhai Yu(于振海)1, Dawei Shen(沈大伟)4, and Yanfeng Guo(郭艳峰)1,5
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China;
3 Analytical Instrumentation Center, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
4 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China;
5 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China;
6 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The van der Waals (vdW) MnSb4Te7 is a newly synthesized antiferromagnetic (AFM) topological insulator hosting a robust axion insulator state irrelative to the specific spin structure. However, the intrinsic hole doped character of MnSb4Te7 makes the Fermi level far away from the Dirac point of about 180 meV, which is unfavorable for the exploration of exotic topological properties such as the quantum anomalous Hall effect (QAHE). To shift up the Fermi level close to the Dirac point, the strategy of partially replacing Sb with Bi as Mn(Sb1-xBix)4Te7 was tried and the magnetotransport properties, in particular, the anomalous Hall effect, were measured and analyzed. Through the electron doping, the anomalous Hall conductance σAH changes from negative to positive between x = 0.3 and 0.5, indicative of a possible topological transition. Besides, a charge neutrality point (CNP) also appears between x = 0.6 and 0.7. The results would be instructive for further understanding the interplay between nontrivial topological states and the magnetism, as well as for the exploration of exotic topological properties.
Keywords:  anomalous Hall effect      doping      topological materials  
Received:  23 March 2023      Revised:  08 May 2023      Accepted manuscript online:  17 May 2023
PACS:  72.80.Ga (Transition-metal compounds)  
  75.50.Ee (Antiferromagnetics)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  73.43.Nq (Quantum phase transitions)  
Fund: Project supported by the Shanghai Science and Technology Innovation Action Plan (Grant No. 21JC1402000), the National Natural Science Foundation of China (Grant No. 12004405), the State Key Laboratory of Functional Materials for Informatics (Grant No. SKL2022), the Double FirstClass Initiative Fund of ShanghaiTech University, the Analytical Instrumentation Center (Grant No. SPST-AIC10112914), SPST, and ShanghaiTech University. W. Xia acknowledges the research fund from the State Key Laboratory of Surface Physics and Department of Physics of Fudan University (Grant No. KF2022_13).
Corresponding Authors:  Zhengtai Liu, Wei Xia     E-mail:  ztliu@mail.sim.ac.cn;xiawei2@shanghaitech.edu.cn

Cite this article: 

Xin Zhang(张鑫), Zhicheng Jiang(江志诚), Jian Yuan(袁健), Xiaofei Hou(侯骁飞), Xia Wang(王霞),Na Yu(余娜), Zhiqiang Zou(邹志强), Zhengtai Liu(刘正太), Wei Xia(夏威),Zhenhai Yu(于振海), Dawei Shen(沈大伟), and Yanfeng Guo(郭艳峰) Doping tuned anomalous Hall effect in the van der Waals magnetic topological phases Mn(Sb1-xBix)4Te7 2023 Chin. Phys. B 32 097201

[1] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[2] Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, Vyazovskaya A Y, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M, Arnau A and Chulkov E V 2017 2D Mater. 4 025082
[3] Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Phys. Rev. Lett. 122 107202
[4] Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sanchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Buchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kissner K, Unzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A and Chulkov E V 2019 Nature 576 416
[5] Li J H, Wang C, Zhang Z T, Gu B L, Duan W H and Xu Y 2019 Phys. Rev. B 100 121103
[6] Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S and Wang Y Y 2020 Nat. Mater. 19 522
[7] Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801
[8] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895
[9] Hu C W, Ding L, Gordon K N, Ghosh B, Tien H J, Li H X, Linn A G, Lien S W, Huang C Y, Mackey S, Liu J Y, Reddy P V S, Singh B, Agarwal A, Bansil A, Song M, Li D S, Xu S Y, Lin H, Cao H B, Chang T R, Dessau D and Ni N 2020 Sci. Adv. 6 eaba4275
[10] Hu C W, Tanatar M A, Prozorov R and Ni N 2022 J. Phys. D: Appl. Phys. 55 054003
[11] Zhong H Y, Bao C H, Wang H, Li J H, Yin Z C, Xu Y, Duan W H, Xia T L and Zhou S Y 2021 Nano Lett. 21 6080
[12] Huan S C, Wang D H, Su H, Wang H Y, Wang X, Yu N, Zou Z Q, Zhang H J and Guo Y F 2021 Appl. Phys. Lett. 118 192105
[13] Huan S C, Zhang S A, Jiang Z C, Su H, Wang H Y, Zhang X, Yang Y C, Liu Z T, Wang X, Yu N, Zou Z Q, Shen D W, Liu J P and Guo Y F 2021 Phys. Rev. Lett. 126 246601
[14] Zhang X, Zhang S, Jiang Z, Huan S, Yang Y, Liu Z, Yang S, Jiao J, Xia W, Wang X, Yu N, Zou Z, Liu Y, Ma J, Shen D, Liu J and Guo Y 2021 arXiv: 2111.04973
[15] Shi G, Zhang M J, Yan D Y, Feng H L, Yang M, Shi Y G and Li Y Q 2020 Chin. Phys. Lett. 37 047301
[16] Ge W B, Sass P M, Yan J Q, Lee S H, Mao Z Q and Wu W D 2021 Phys. Rev. B 103 134403
[17] Yan D Y, Yang M, Song P B, Song Y T, Wang C X, Yi C J and Shi Y G 2021 Phys. Rev. B 103 224412
[18] Chen B, Wang D H, Jiang Z C, Zhang B, Cui S T, Guo J W, Xie H K, Zhang Y, Naveed M, Du Y, Wang X F, Zhang H J, Fei F C, Shen D W, Sun Z and Song F Q 2021 Phys. Rev. B 104 075134
[19] Hu C W, Lien S W, Feng E, Mackey S, Tien H J, Mazin I I, Cao H B, Chang T R and Ni N 2021 Phys. Rev. B 104 054422
[20] Guan Y D, Yan C H, Lee S H, Gui X, Ning W, Ning J L, Zhu Y L, Kothakonda M, Xu C Q, Ke X L, Sun J W, Xie W W, Yang S L and Mao Z Q 2022 Phys. Rev. Mater. 6 054203
[21] Shi M Z, Lei B, Zhu C S, Ma D H, Cui J H, Sun Z L, Ying J J and Chen X H 2019 Phys. Rev. B 100 155144
[22] Yu Z H, Chen X J, Xia W, Wang N N, Lv X, Liu X L, Su H, Li Z Y, Wu D S, Wu W, Liu Z Y, Zhao J G, Li M T, Li S J, Li X, Dong Z H, Zhou C Y, Zhang L L, Wang X, Yu N, Zou Z Q, Luo J L, Cheng J G, Wang L, Zhong Z C and Guo Y F 2022 arXiv: 2202.06016
[23] Yan J Q, Okamoto S, McGuire M A, May A F, McQueeney R J and Sales B C 2019 Phys. Rev. B 100 104409
[24] Lee S H, Graf D, Min L J, Zhu Y L, Yi H M, Ciocys S, Wang Y X, Choi E S, Basnet R, Fereidouni A, Wegner A, Zhao Y F, Verlinde K, He J Y, Redwing R, Gopalan V, Churchill H O H, Lanzara A, Samarth N, Chang C Z, Hu J and Mao Z Q 2021 Phys. Rev. X 11 031032
[25] Moon J, Kim J, Koirala N, Salehi M, Vanderbilt D and Oh S 2019 Nano Lett. 19 3409
[1] Tuning magneto-dielectric properties of Co2Z ferrites via Gd doping for high-frequency applications
Jian Wu(武剑), Bing Lu(卢冰), Ying Zhang(张颖), Yixin Chen(陈一鑫), Kai Sun(孙凯), Daming Chen(陈大明), Qiang Li(李强), Yingli Liu(刘颖力), and Jie Li(李颉). Chin. Phys. B, 2023, 32(9): 097501.
[2] Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study
Qianqian Wang(王倩倩), Jianzhou Zhao(赵建洲), Weikang Wu(吴维康), Yinning Zhou(周胤宁), Qile Li, Mark T. Edmonds, and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2023, 32(8): 087506.
[3] High on-state current p-type tunnel effect transistor based on doping modulation
Jiale Sun(孙佳乐), Yuming Zhang(张玉明), Hongliang Lu(吕红亮), Zhijun Lyu(吕智军),Yi Zhu(朱翊), Yuche Pan(潘禹澈), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(7): 078504.
[4] Electronic and thermal properties of Ag-doped single crystal zinc oxide via laser-induced technique
Huan Xing(邢欢), Hui-Qiong Wang(王惠琼), Tinglu Song(宋廷鲁), Chunli Li(李纯莉), Yang Dai(戴扬), Gengming Fu(傅耿明), Junyong Kang(康俊勇), and Jin-Cheng Zheng(郑金成). Chin. Phys. B, 2023, 32(6): 066107.
[5] Multiferroic monolayers VOX (X = Cl, Br, I): Tunable ferromagnetism via charge doping and ferroelastic switching
Hong-Chao Yang(杨洪超), Peng-Cheng Liu(刘鹏程), Liu-Yu Mu(穆鎏羽), Ying-De Li(李英德), Kai Han(韩锴), and Xiao-Le Qiu(邱潇乐). Chin. Phys. B, 2023, 32(6): 067701.
[6] Structural phase transition and transport properties in topological material candidate NaZn4As3
Qing-Xin Dong(董庆新), Bin-Bin Ruan(阮彬彬), Yi-Fei Huang(黄奕飞), Yi-Yan Wang(王义炎), Li-Bo Zhang(张黎博), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2023, 32(6): 066501.
[7] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[8] Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80
Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2023, 32(5): 057501.
[9] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[10] Optimal impurity distribution model and experimental verification of variation of lateral doping termination
Min Ren(任敏), Chang-Yu Ye(叶昶宇), Jian-Yu Zhou(周建宇), Xin Zhang(张新), Fang Zheng(郑芳), Rong-Yao Ma(马荣耀), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(4): 048505.
[11] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[12] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[13] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[14] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[15] Direct observation of the distribution of impurity in phosphorous/boron co-doped Si nanocrystals
Dongke Li(李东珂), Junnan Han(韩俊楠), Teng Sun(孙腾), Jiaming Chen(陈佳明), Etienne Talbot, Rémi Demoulin, Wanghua Chen(陈王华), Xiaodong Pi(皮孝东), Jun Xu(徐骏), and Kunji Chen(陈坤基). Chin. Phys. B, 2023, 32(12): 126102.
No Suggested Reading articles found!