Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 048701    DOI: 10.1088/1674-1056/ac9cc0
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of electric field on vibrational resonances in Hindmarsh-Rose neuronal systems for signal detection

Xiaoxia Li(李晓霞)1,3,†, Xiaopeng Xue(薛小鹏)2, Dongjie Liu(刘栋杰)1,3, Tianyi Yu(余天意)1,3, Qianqian He(何倩倩)2, and Guizhi Xu(徐桂芝)1,2,3
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China;
2 School of Health Sciences&Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China;
3 Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China
Abstract  Changes in the concentration of charged ions in neurons can generate induced electric fields, which can further modulate cell membrane potential. In this paper, Fourier coefficients are used to investigate the effect of electric field on vibrational resonance for signal detection in a single neuron model and a bidirectionally coupled neuron model, respectively. The study found that the internal electric field weakens vibrational resonance by changing two factors, membrane potential and phase-locked mode, while the periodic external electric field of an appropriate frequency significantly enhances the vibrational resonance, suggesting that the external electric field may play a constructive role in the detection of weak signals in the brain and neuronal systems. Furthermore, when the coupling of two neurons is considered, the effect of the electric field on the vibrational resonance is similar to that of a single neuron. The paper also illustrates the effect of electric field coupling on vibrational resonance. This study may provide a new theoretical basis for understanding information encoding and transmission in neurons.
Keywords:  electric field      Fourier-coefficient      neuronal dynamics      vibrational resonance  
Received:  16 August 2022      Revised:  29 September 2022      Accepted manuscript online:  21 October 2022
PACS:  87.19.ll (Models of single neurons and networks)  
  87.18.Sn (Neural networks and synaptic communication)  
  87.19.ln (Oscillations and resonance)  
  87.19.lg (Synapses: chemical and electrical (gap junctions))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51737003 and 51977060) and the Natural Science Foundation of Hebei Province, China (Grant No. E2011202051).
Corresponding Authors:  Xiaoxia Li     E-mail:  lixiaoxia@hebut.edu.cn

Cite this article: 

Xiaoxia Li(李晓霞), Xiaopeng Xue(薛小鹏), Dongjie Liu(刘栋杰), Tianyi Yu(余天意), Qianqian He(何倩倩), and Guizhi Xu(徐桂芝) Effects of electric field on vibrational resonances in Hindmarsh-Rose neuronal systems for signal detection 2023 Chin. Phys. B 32 048701

[1] Benzi R, Sutera A and Vulpiani A 1981 Physica A 14 453
[2] Benzi R, Parisi G, Sutera A and Vulpiani A 1982 Tellus 34 10
[3] Benzi R 2010 Nonlinear Process Geophys 17 431
[4] Mikhaylov A N, Guseinov D V, Belov A I, et al. 2021 Chaos, Solitons and Fractals 144 110723
[5] Bai C, Du L and Mei D 2009 Cent. Eur. J. Phys. 7 601
[6] Wang C J 2004 Phys. Scr. 80 065004
[7] Han Q, Yang T and Zeng C, Wang H, Liu Z, Fu Y, Zhang C and Tian D 2014 Physica A 408 96
[8] Zhang R F, Cheng Q H and Xu D H 2015 Acta Phys. Sin 64 024211 (in Chinese)
[9] Chizhevsky V N and Giacomelli G 2006 Phys. Rev. E 73 022103
[10] Hänggi P 2002 Chempluschem 3 285
[11] Landa P S and McClintock P V E 2000 J. Phys. A: Math. Theor. 33 L433
[12] Zaikin A A, López L, Baltanás J P, Kurths J and Sanjuán M A F 2002 Phys. Rev. E 66 011106
[13] Chizhevsky V N, Smeu E and Giacomelli G 2003 Phys. Rev. Lett. 91 220602
[14] Ghosh S and Ray D S 2013 Phys. Rev. E 88 042904
[15] Carroll T L and Pecora L M 1993 Phys. Rev. Lett. 70 576
[16] Nobukawa S and Shibata N 2019 Sci. Rep. 9 4990
[17] Baysal V, Saraç Z and Yilmaz E 2019 Nonlinear Dyn. 97 1275
[18] Yao Y, Ma J, Gui R and Cheng G 2021 Chaos 31 023103
[19] González-Miranda J M 2007 Int. J. Bifur. Chaos 17 3071
[20] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[21] Noble D 1960 Nature 188 495
[22] Chua L, Sbitnev V and Kim H 2012 Int. J. Bifur. Chaos 22 1230011
[23] Hu X and Liu C 2019 Nonlinear Dyn. 97 1721
[24] FitzHugh R 1969 Bioeng 1 85
[25] Morris C and Lecar H 1981 Biophys. J. 35 193
[26] Hindmarsh J L and Rose R M 1982 Nature 296 162
[27] Prescott S A, Ratté S, De Koninck Y and Sejnowski T J 2006 J. Neurosci. 26 9084
[28] Wiesenfeld K and Jaramillo F 1998 Chaos 8 539
[29] Shepherd G M 2004 OUP
[30] Song X, Wang H and Chen Y 2018 Nonlinear Dyn. 94 141
[31] Han C, Qin Y and Qin Q 2019 Physica A 523 204
[32] Li H, Sun X and Xiao J 2018 Chaos 28 043113
[33] Douglass J K, Wilkens L, Pantazelou E and Moss F 1993 Nature 365 337
[34] Lv M, Wang C, Ren G, Ma J and Song X 2016 Nonlinear Dyn. 85 1479
[35] Bhargavan M 2008 Health. Phys. 95 612
[36] Shneider M N and Pekker M 2013 J. Appl. Phys. 114 104701
[37] Oberschleissheim 2020 Health. Phys. 118 483
[38] Capelli E, Torrisi F, Venturini L, Granato M, Fassina L, Lupo G F D and Ricevuti G 2017 J. Healthc. Eng. 2017 2530270
[39] Ahmad R H M A, Fakhoury M and Lawand N 2020 Curr. Alzheimer. Res. 17 1001
[40] Fisher R, Salanova V, Witt T, et al. 2010 Epilepsia 51 899
[41] Muñana K R 2013 Top. Companion. Anim. M 28 67
[42] Yao Y, Su C and Xiong J 2019 Physica A 531 121734
[43] Ge M, Lu L, Xu Y, Mamatimin R, Pei Q and Jia Y 2020 Chaos, Solitons and Fractals 133 109645
[44] Baysal V and Yilmaz E 2020 Physica A 537 122733
[45] Ma J, Zhang G, Hayat T and Ren G 2019 Nonlinear Dyn 95 1585
[46] Hou Z, Ma J, Zhan X, Yang L and Jia Y 2021 Chaos, Solitons and Fractals 142 110522
[47] Rubin J E and Terman D 2004 J. Comput. Neurosci. 16 211
[48] Sanders T H 2017 Front. Integr. Neurosci. 11 24
[49] Stefani A, Trendafilov V, Liguori C, Fedele E and Galatib S 2017 Prog. Neurobiol. 151 157
[50] Wouapi K, Fotsin B H, Louodop F P, Feudjio K F, Njitacke Z T and Hermann Djeudjo T 2020 Cogn. Neurodyn. 14 375
[51] Deng B, Wang J and Wei X 2009 Chaos 19 013117
[52] Wu X X, Yao C and Shuai J 2015 Sci. Rep. 5 1
[53] Merrill D R, Bikson M and Jefferys J G R 2005 J. Neurosci. Methods 141 171
[54] Lv M, Ma J, Yao Y G and Alzahrani F 2019 Sci China Technol. Sci. 62 448
[55] Xu Y, Jia Y, Ma J, Hayat T and Alsaedi A 2018 Sci. Rep. 8 1
[56] Ma J, Wu F, Alsaedi A and Tang J 2018 Nonlinear Dyn. 93 2057
[57] Lozano A M, Lipsman N, Bergman H, Brown P, Chabardes S, Chang J W, Matthews K, McIntyre C C, Schlaepfer T E, Schulder M, Temel Y, Volkmann J and Krauss J K 2019 Nat. Rev. Neurol. 15 148
[58] Lozano A M and Lipsman N 2013 Neuron 77 406
[59] Ashkan K, Rogers P, Bergman H and Ughratdar I 2017 Nat. Rev. Neurol. 13 548
[60] Groome J R 2014 Voltage Gated Sodium Channels pp. 7-31
[1] Thermal spin molecular logic gates modulated by an electric field
Xingyi Tan(谭兴毅), Qiang Li(李强), and Dahua Ren(任达华). Chin. Phys. B, 2023, 32(5): 057101.
[2] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[3] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[4] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[5] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[6] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[7] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[8] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[9] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[10] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[11] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[12] Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure
Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2021, 30(5): 057504.
[13] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[14] Band alignment in SiC-based one-dimensional van der Waals homojunctions
Xing-Yi Tan(谭兴毅), Lin-Jie Ding(丁林杰), and Da-Hua Ren(任达华). Chin. Phys. B, 2021, 30(12): 126102.
[15] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
No Suggested Reading articles found!