CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field |
Yu Dong(董煜)1, Zhi-Gang Shao(邵志刚)1,2,†, Cang-Long Wang(王苍龙)3,4, and Lei Yang(杨磊)3,4 |
1. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, SPTE, South China Normal University, Guangzhou 510006, China; 2. Guangdong--Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China; 3. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 4. School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Adsorption characteristics of CO adsorbed on pristine 4,12,2-graphyne (4,12,2-G) and Fe-doped 4,12,2-graphyne (Fe-4,12,2-G) are studied by first-principles calculations. It is shown that CO is only physically adsorbed on pristine 4,12,2-G. Fe atoms can be doped into 4,12,2-G stably and lead to band gap opening. After doping, the interaction between Fe-4,12,2-G and CO is significantly enhanced and chemisorption occurs. The maximum adsorption energy reaches -1.606 eV. Meanwhile, the charge transfer between them increases from 0.009e to 0.196e. Moreover, the electric field can effectively regulate the adsorption ability of the Fe-4,12,2-G system, which is expected to achieve the capture and release of CO. Our study is helpful to promote applications of two-dimensional carbon materials in gas sensing and to provide new ideas for reversible CO sensor research.
|
Received: 08 February 2023
Revised: 15 March 2023
Accepted manuscript online: 31 March 2023
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
68.43.-h
|
(Chemisorption/physisorption: adsorbates on surfaces)
|
|
68.43.Fg
|
(Adsorbate structure (binding sites, geometry))
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.52072132). |
Corresponding Authors:
Zhi-Gang Shao
E-mail: zgshao@scnu.edu.cn
|
Cite this article:
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊) Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field 2023 Chin. Phys. B 32 087101
|
[1] Rose J J, Wang L, Xu Q, McTiernan C F, Shiva S, Tejero J and Gladwin M T 2017 Am. J. Respir. Crit. Care Med. 195 596 [2] Hampson N B and Bodwin D 2013 J. Emerg. Med. 44 625 [3] Li F, Chan H C O, Liu S, Jia H, Li H, Hu Y, Wang Z and Huang W 2015 Forensic Sci. Int. 253 112 [4] Su H C and Myung N V 2019 Electroanalysis 31 437 [5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Gregorieva I V and Firsov A A 2004 Science 306 666 [6] Basu S and Bhattacharyya P 2012 Sens. Actuator B Chem. 173 1 [7] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652 [8] Leenaerts O, Partoens B and Peeters F 2008 Phys. Rev. B 77 125416 [9] Yang D, Yang N, Ni J, Xiao J, Jiang J, Liang Q, Ren T and Chen X 2017 Mater. Des. 119 397 [10] Li G, Li Y, Liu H, Guo Y, Li Y and Zhu D 2010 Chem. Commun. 46 3256 [11] Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y and Jena P 2015 Proc. Natl. Acad. Sci. USA 112 2372 [12] Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X and Zhong D 2017 Nat. Commun. 8 14924 [13] Zhang L, Wang Z, Wang Z M, Du S, Gao H J and Liu F 2015 J. Phys. Chem. Lett. 6 2959 [14] Fan Q, Yan L, Tripp M W, Krejčí O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P and Gottfried J M 2021 Science 372 852 [15] Liu X, Cho S M, Lin S, Chen Z, Choi W, Kim Y M, Yun E, Baek E H, Ryu D H and Lee H 2022 Matter 5 2306 [16] Yang D C, Tian Z W, Chen Y K, Eglitis R I, Zhang H X and Jia R 2020 Appl. Surf. Sci. 499 143800 [17] Dwivedi S 2022 Int. J. Hydrog. Energy 47 41848 [18] Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H and Li Y 2018 Chem. Rev. 118 7744 [19] Zhang H, Lee J Y and Liu H 2021 J. Phys. Chem. C 125 10948 [20] Rafique M, Shuai Y, Tan H P and Hassan M 2017 Chin. Phys. B 26 056301 [21] Gao X, Zhou Q, Wang J, Xu L and Zeng W 2020 Appl. Surf. Sci. 517 146180 [22] Zhao D, Fan X, Luo Z, An Y and Hu Y 2018 Phys. Lett. A 382 2965 [23] Lakshmy S, Kundu A, Kalarikkal N and Chakraborty B 2023 J. Phys. D: Appl. Phys. 56 055402 [24] Liu X J, Cao W Q, Huang Z H, Yuan J, Fang X Y and Cao M S 2015 Chin. Phys. Lett. 32 036802 [25] Choi Y R, Yoon Y G, Choi K S, Kang J H, Shim Y S, Kim Y H, Chang H J, Lee J H, Park C R, Kim S Y and Jang H W 2015 Carbon 91 178 [26] Song M, Chen Y, Liu X, Xu W, Zhao Y, Zhang M and Zhang C 2020 Phys. Lett. A 384 126332 [27] Zhang C P, Li B and Shao Z G 2019 Appl. Surf. Sci. 469 641 [28] Li B, Shao Z G and Fen Y T 2021 Phys. Chem. Chem. Phys. 23 12771 [29] Yang S, Qian X, Xu H, Xiong J, Wang Z and Gu H 2021 Physica E 128 114603 [30] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347 [31] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113 [32] Li H B, Feng Y T, Shao Z G, Wang C L and Yang L 2022 Appl. Surf. Sci. 586 152749 [33] Yang S, Lei G, Xu H, Xu B, Li H, Lan Z, Wang Z and Gu H 2019 Appl. Surf. Sci. 480 205 [34] Zhang T, Sun H, Wang F, Zhang W, Ma J, Tang S, Gong H and Zhang J 2018 Appl. Surf. Sci. 427 1019 [35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [36] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [39] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [40] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354 [41] Yang D C, Tian Z W, Chen Y K, Eglitis R I, Zhang H X and Jia R 2020 Appl. Surf. Sci. 499 143800 [42] Wanno B and Tabtimsai C 2014 Superlattices Microstruct. 67 110 [43] Zhang J N, Ma L, Zhang M and Zhang J M 2020 Physica E 118 113879 [44] Wang Y J, Wang C Y and Eang S Y 2011 Chin. Phys. B 20 036801 [45] Sharma A, Anu, Khan M S, Husain M, Khan M S and Srivastava A 2018 IEEE Sens. J. 18 2853 [46] Pang D, Shi P, Lin L, Xie K, Deng C and Zhang Z 2023 Phys. Chem. Chem. Phys. 25 6626 [47] Obodo K O, Ouma C N M, Obodo J T, Gebreyesus G, Rai D P, Ukpong A M and Bouhafs B 2021 Nanotechnology 32 355502 [48] Li W, Ding C, Li J, Ren Q, Bai G and Xu J 2020 Appl. Surf. Sci. 502 144140 [49] Wang J, Hou Y, Zhang X, Xu Z, Liu G, Hussain S and Qiao G 2023 Appl. Surf. Sci. 610 155399 [50] Pyykkö P and Atsumi M 2009 Chem. Eur. J. 15 186 [51] Ma L, Zhang J M, Xu K W and Ji V 2015 Appl. Surf. Sci. 343 121 [52] Hyman M P and Medlin J W 2005 J. Phys. Chem. B 109 6304 [53] Che F, Gray J T, Ha S and McEwen J S 2015 J. Catal. 332 187 [54] Ma S, Yuan D, Jiao Z, Wang T and Dai X 2017 J. Phys. Chem. C 121 24077 [55] Lin K Y, Nachimuthu S, Nguyen M T, Mizuta H and Jiang J C 2019 J. Phys. Chem. C 123 30373 [56] Yeh C H, Chen Y T and Hsieh D W 2021 RSC Adv. 11 33276 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|