CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structure and stability of nitrogen hydrate in a single-walled carbon nanotube under external electric fields |
Chi Xu(徐驰), Jiaxian Li(厉嘉贤), Min Wei(韦敏), Xiaoyan Zhou(周晓艳)†, and Hangjun Lu(陆杭军)‡ |
Department of Physics, Zhejiang Normal University, Jinhua 321004, China |
|
|
Abstract The effects of an external electric field on the structure and stability of the nitrogen hydrate confined in a single-walled carbon nanotube (CNT) were studied by using molecular dynamics (MD) simulations. It was found that the structure of the nitrogen hydrate, the occupancy and distribution of the nitrogen molecules inside the nanotube depend sensitively on the direction of the external electric field. A parallel electric field can destabilize the nitrogen hydrate and cause the release of nitrogen molecules from the ice nanotube of the hydrate. While a vertical electric field can redistribute the nitrogen molecules from the core to the shell of the hydrate. The occupancy of the nitrogen molecules of the hydrate follows a sigmoid-like function as the direction of the electric field changes. Our findings may aid in the development of methods to control gas release and encapsulation by using electric fields.
|
Received: 10 February 2023
Revised: 19 March 2023
Accepted manuscript online: 16 April 2023
|
PACS:
|
64.70.F-
|
(Liquid-vapor transitions)
|
|
68.03.Hj
|
(Liquid surface structure: measurements and simulations)
|
|
68.03.-g
|
(Gas-liquid and vacuum-liquid interfaces)
|
|
68.18.Jk
|
(Phase transitions in liquid thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875237). |
Corresponding Authors:
Xiaoyan Zhou, Hangjun Lu
E-mail: zxylu@zjnu.cn;zjlhun@zjnu.cn
|
Cite this article:
Chi Xu(徐驰), Jiaxian Li(厉嘉贤), Min Wei(韦敏), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军) Structure and stability of nitrogen hydrate in a single-walled carbon nanotube under external electric fields 2023 Chin. Phys. B 32 076402
|
[1] Veluswamy H P, Kumar A, Seo Y, Lee J D and Linga P 2018 Appl. Energ. 216 262 [2] Mao W L and Mao H K 2004 Proc. Natl. Acad. Sci. USA 101 708 [3] Lee H L J W, Kim D Y, et al. 2005 Nature 434 743 [4] Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, March K N and Sloan E D 2004 Science 306 469 [5] Englezos P and Lee J D 2005 Korean J. Chem. Eng. 22 671 [6] Babu P, Linga P, Kumar R and Englezos P 2015 Energy 85 261 [7] Xu C G and Li X S 2014 Rsc. Advances 4 18301 [8] Struzhkin V V, Militzer B, Mao W L, Mao H K and Hemley R J 2007 Chem. Rev. 107 4133 [9] Zhao W, Francisco J S and Xiao C Z 2016 J. Chem. Phys. Lett. 7 4911 [10] Yu X H, Liu Y, Du S Y, Zheng X, Zhu J L, Xu H W, Zhang J Z, Du S Y, Zeng X C and Francisco J 2020 Chin. Phys. Lett. 37 048201 [11] McMullan R K and Jeffrey G 1965 J. Chem. Phys. 42 2725 [12] Mak T C and McMullan R K 1965 J. Chem. Phys. 42 2732 [13] Ripmeester J A, Tse J S, Ratcliffe C I and Powell B M 1987 Nature 325 135 [14] Mao W L, Mao H K, Goncharov A F, Struzhkin V V, Guo Q, Hu J, Shu J, Hemley R J, Somayazulu M and Zhao Y 2002 Science 297 2247 [15] Casco M E, Silvestre-Albero J, Ramírez-Cuesta A J, Rey F, Jordá J L, Bansode A, Urakawa A, Peral I, Martínez-Escandell M and Kaneko K 2015 Nat. Commun. 6 6432 [16] Miyawaki J, Kanda T, Suzuki T, Okui T, Maeda Y and Kaneko K 1998 J. Phys. Chem. B 102 2187 [17] Borchardt L, Nickel W, Casco M, Senkovska I, Bon V, Wallacher D, Grimm N, Krause S and Silvestre-Albero J 2016 Phys. Chem. Chem. Phys. 18 20607 [18] Guo P, Qiu Y L, Li L L, Luo Q, Zhao J F and Pan Y K 2018 Chin. Phys. B 27 043103 [19] Buffett B and Zatsepina O Y 2000 Mar. Geol. 164 69 [20] Prasad P S, Sowjanya Y and Dhanunjana Chari V 2014 J. Phys. Chem. C 118 7759 [21] Linga P, Haligva C, Nam S C, Ripmeester J A and Englezos P 2009 Energ. Fuel 23 5496 [22] Kumar K V, Preuss K, Titirici M M and Rodríguez-Reinoso F 2017 Chem. Rev. 117 1796 [23] Byl O, Liu J C, Wang Y, Yim W L, Johnson J K and Yates J T 2006 J. Am. Chem. Soc. 128 12090 [24] Kolesnikov A I, Zanotti J M, Loong C K, Thiyagarajan P, Moravsky A P, Loutfy R O and Burnham C J 2004 Phys. Rev. Lett. 93 035503 [25] Borchardt L, Casco M E and Silvestre-Albero J 2018 Chem. Phys. Chem. 19 1298 [26] Khurana M, Yin Z and Linga P 2017 ACS Sustainable Chemistry & Engineering 5 11176 [27] Bai D, Chen G, Zhang X and Wang W 2011 Langmuir 27 5961 [28] Bai J, Angell C A and Zeng X C 2010 Proc. Natl. Acad. Sci. USA 107 5718 [29] Zhao W H, Wang L, Bai J, Yuan L F, Yang J and Zeng X C 2014 Acc. Chem. Res. 47 2505 [30] Zhao W H, Bai J, Wang L, Yuan L F, Yang J, Francisco J S and Zeng X C 2015 J. Mater. Chem. A 3 5547 [31] Bai J and Zeng X C 2012 Proc. Natl. Acad. Sci. USA 109 21240 [32] Zhong H, Li L, Ma R, Zhong J, Yan Y, Li S, Zhang J and Liu J 2020 Phys. Chem. Chem. Phys. 22 5774 [33] Tanaka H and Koga K 2005 J. Chem. Phys. 123 094706 [34] Zhao W, Wang L, Bai J, Francisco J S and Zeng X C 2014 J. Am. Chem. Soc. 136 10661 [35] Zhao W, Bai J, Francisco J S and Zeng X C 2018 J. Phys. Chem. C 122 7951 [36] Akbarzadeh H, Abbaspour M, Salemi S and Nazarian A 2018 New J. Chem. 42 7083 [37] Winarto, Takaiwa D, Yamamoto E and Yasuoka K 2015 J. Chem. Phys. 142 124701 [38] Mei F, Zhou X, Kou J, Wu F, Wang C and Lu H 2015 J. Chem. Phys. 142 134704 [39] Vaitheeswaran S, Yin H and Rasaiah J C 2005 J. Phys. Chem. B 109 6629 [40] Vaitheeswaran S, Rasaiah J C and Hummer G 2004 J. Chem. Phys. 121 7955 [41] Fu Z, Luo Y, Ma J and Wei G 2011 J. Chem. Phys. 134 154507 [42] Kayal A and Chandra A 2015 J. Chem. Phys. 143 224708 [43] Winarto, Takaiwa D, Yamamoto E and Yasuoka K 2016 Phys. Chem. Chem. Phys. 18 33310 [44] Winarto, Takaiwa D, Yamamoto E and Yasuoka K 2015 Nanoscale 7 12659 [45] Li J, Lu H and Zhou X 2020 Nanoscale 12 12801 [46] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926 [47] Hess B, Kutzner C, Van Der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435 [48] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182 [49] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101 [50] Rappé A K, Casewit C J, Colwell K, Goddard III W A and Skiff W M 1992 J. Am. Chem. Soc. 114 10024 [51] Li W, Zuo X, Zhou X and Lu H 2019 J. Chem. Phys. 150 104702 [52] Zhang M, Zuo G, Chen J, Gao Y and Fang H 2013 Sci. Rep. 3 1660 [53] Feng Q, Li J, Zhou X and Lu H 2022 Chin. Phys. B 31 036801 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|