Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 076402    DOI: 10.1088/1674-1056/accd4a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structure and stability of nitrogen hydrate in a single-walled carbon nanotube under external electric fields

Chi Xu(徐驰), Jiaxian Li(厉嘉贤), Min Wei(韦敏), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军)
Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  The effects of an external electric field on the structure and stability of the nitrogen hydrate confined in a single-walled carbon nanotube (CNT) were studied by using molecular dynamics (MD) simulations. It was found that the structure of the nitrogen hydrate, the occupancy and distribution of the nitrogen molecules inside the nanotube depend sensitively on the direction of the external electric field. A parallel electric field can destabilize the nitrogen hydrate and cause the release of nitrogen molecules from the ice nanotube of the hydrate. While a vertical electric field can redistribute the nitrogen molecules from the core to the shell of the hydrate. The occupancy of the nitrogen molecules of the hydrate follows a sigmoid-like function as the direction of the electric field changes. Our findings may aid in the development of methods to control gas release and encapsulation by using electric fields.
Keywords:  nitrogen hydrate      ice nanotube      electric field  
Received:  10 February 2023      Revised:  19 March 2023      Accepted manuscript online:  16 April 2023
PACS:  64.70.F- (Liquid-vapor transitions)  
  68.03.Hj (Liquid surface structure: measurements and simulations)  
  68.03.-g (Gas-liquid and vacuum-liquid interfaces)  
  68.18.Jk (Phase transitions in liquid thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875237).
Corresponding Authors:  Xiaoyan Zhou, Hangjun Lu     E-mail:  zxylu@zjnu.cn;zjlhun@zjnu.cn

Cite this article: 

Chi Xu(徐驰), Jiaxian Li(厉嘉贤), Min Wei(韦敏), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军) Structure and stability of nitrogen hydrate in a single-walled carbon nanotube under external electric fields 2023 Chin. Phys. B 32 076402

[1] Veluswamy H P, Kumar A, Seo Y, Lee J D and Linga P 2018 Appl. Energ. 216 262
[2] Mao W L and Mao H K 2004 Proc. Natl. Acad. Sci. USA 101 708
[3] Lee H L J W, Kim D Y, et al. 2005 Nature 434 743
[4] Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, March K N and Sloan E D 2004 Science 306 469
[5] Englezos P and Lee J D 2005 Korean J. Chem. Eng. 22 671
[6] Babu P, Linga P, Kumar R and Englezos P 2015 Energy 85 261
[7] Xu C G and Li X S 2014 Rsc. Advances 4 18301
[8] Struzhkin V V, Militzer B, Mao W L, Mao H K and Hemley R J 2007 Chem. Rev. 107 4133
[9] Zhao W, Francisco J S and Xiao C Z 2016 J. Chem. Phys. Lett. 7 4911
[10] Yu X H, Liu Y, Du S Y, Zheng X, Zhu J L, Xu H W, Zhang J Z, Du S Y, Zeng X C and Francisco J 2020 Chin. Phys. Lett. 37 048201
[11] McMullan R K and Jeffrey G 1965 J. Chem. Phys. 42 2725
[12] Mak T C and McMullan R K 1965 J. Chem. Phys. 42 2732
[13] Ripmeester J A, Tse J S, Ratcliffe C I and Powell B M 1987 Nature 325 135
[14] Mao W L, Mao H K, Goncharov A F, Struzhkin V V, Guo Q, Hu J, Shu J, Hemley R J, Somayazulu M and Zhao Y 2002 Science 297 2247
[15] Casco M E, Silvestre-Albero J, Ramírez-Cuesta A J, Rey F, Jordá J L, Bansode A, Urakawa A, Peral I, Martínez-Escandell M and Kaneko K 2015 Nat. Commun. 6 6432
[16] Miyawaki J, Kanda T, Suzuki T, Okui T, Maeda Y and Kaneko K 1998 J. Phys. Chem. B 102 2187
[17] Borchardt L, Nickel W, Casco M, Senkovska I, Bon V, Wallacher D, Grimm N, Krause S and Silvestre-Albero J 2016 Phys. Chem. Chem. Phys. 18 20607
[18] Guo P, Qiu Y L, Li L L, Luo Q, Zhao J F and Pan Y K 2018 Chin. Phys. B 27 043103
[19] Buffett B and Zatsepina O Y 2000 Mar. Geol. 164 69
[20] Prasad P S, Sowjanya Y and Dhanunjana Chari V 2014 J. Phys. Chem. C 118 7759
[21] Linga P, Haligva C, Nam S C, Ripmeester J A and Englezos P 2009 Energ. Fuel 23 5496
[22] Kumar K V, Preuss K, Titirici M M and Rodríguez-Reinoso F 2017 Chem. Rev. 117 1796
[23] Byl O, Liu J C, Wang Y, Yim W L, Johnson J K and Yates J T 2006 J. Am. Chem. Soc. 128 12090
[24] Kolesnikov A I, Zanotti J M, Loong C K, Thiyagarajan P, Moravsky A P, Loutfy R O and Burnham C J 2004 Phys. Rev. Lett. 93 035503
[25] Borchardt L, Casco M E and Silvestre-Albero J 2018 Chem. Phys. Chem. 19 1298
[26] Khurana M, Yin Z and Linga P 2017 ACS Sustainable Chemistry & Engineering 5 11176
[27] Bai D, Chen G, Zhang X and Wang W 2011 Langmuir 27 5961
[28] Bai J, Angell C A and Zeng X C 2010 Proc. Natl. Acad. Sci. USA 107 5718
[29] Zhao W H, Wang L, Bai J, Yuan L F, Yang J and Zeng X C 2014 Acc. Chem. Res. 47 2505
[30] Zhao W H, Bai J, Wang L, Yuan L F, Yang J, Francisco J S and Zeng X C 2015 J. Mater. Chem. A 3 5547
[31] Bai J and Zeng X C 2012 Proc. Natl. Acad. Sci. USA 109 21240
[32] Zhong H, Li L, Ma R, Zhong J, Yan Y, Li S, Zhang J and Liu J 2020 Phys. Chem. Chem. Phys. 22 5774
[33] Tanaka H and Koga K 2005 J. Chem. Phys. 123 094706
[34] Zhao W, Wang L, Bai J, Francisco J S and Zeng X C 2014 J. Am. Chem. Soc. 136 10661
[35] Zhao W, Bai J, Francisco J S and Zeng X C 2018 J. Phys. Chem. C 122 7951
[36] Akbarzadeh H, Abbaspour M, Salemi S and Nazarian A 2018 New J. Chem. 42 7083
[37] Winarto, Takaiwa D, Yamamoto E and Yasuoka K 2015 J. Chem. Phys. 142 124701
[38] Mei F, Zhou X, Kou J, Wu F, Wang C and Lu H 2015 J. Chem. Phys. 142 134704
[39] Vaitheeswaran S, Yin H and Rasaiah J C 2005 J. Phys. Chem. B 109 6629
[40] Vaitheeswaran S, Rasaiah J C and Hummer G 2004 J. Chem. Phys. 121 7955
[41] Fu Z, Luo Y, Ma J and Wei G 2011 J. Chem. Phys. 134 154507
[42] Kayal A and Chandra A 2015 J. Chem. Phys. 143 224708
[43] Winarto, Takaiwa D, Yamamoto E and Yasuoka K 2016 Phys. Chem. Chem. Phys. 18 33310
[44] Winarto, Takaiwa D, Yamamoto E and Yasuoka K 2015 Nanoscale 7 12659
[45] Li J, Lu H and Zhou X 2020 Nanoscale 12 12801
[46] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[47] Hess B, Kutzner C, Van Der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[48] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[49] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[50] Rappé A K, Casewit C J, Colwell K, Goddard III W A and Skiff W M 1992 J. Am. Chem. Soc. 114 10024
[51] Li W, Zuo X, Zhou X and Lu H 2019 J. Chem. Phys. 150 104702
[52] Zhang M, Zuo G, Chen J, Gao Y and Fang H 2013 Sci. Rep. 3 1660
[53] Feng Q, Li J, Zhou X and Lu H 2022 Chin. Phys. B 31 036801
[1] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[2] Charge trapping effect at the interface of ferroelectric/interlayer in the ferroelectric field effect transistor gate stack
Xiaoqing Sun(孙晓清), Hao Xu(徐昊), Junshuai Chai(柴俊帅), Xiaolei Wang(王晓磊), and Wenwu Wang(王文武). Chin. Phys. B, 2023, 32(8): 087701.
[3] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[4] Thermal spin molecular logic gates modulated by an electric field
Xingyi Tan(谭兴毅), Qiang Li(李强), and Dahua Ren(任达华). Chin. Phys. B, 2023, 32(5): 057101.
[5] Effects of electric field on vibrational resonances in Hindmarsh-Rose neuronal systems for signal detection
Xiaoxia Li(李晓霞), Xiaopeng Xue(薛小鹏), Dongjie Liu(刘栋杰), Tianyi Yu(余天意), Qianqian He(何倩倩), and Guizhi Xu(徐桂芝). Chin. Phys. B, 2023, 32(4): 048701.
[6] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[7] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[8] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[9] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[10] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[11] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[12] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[13] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[14] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[15] Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure
Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2021, 30(5): 057504.
No Suggested Reading articles found!