Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 098506    DOI: 10.1088/1674-1056/ace248
RAPID COMMUNICATION Prev   Next  

Novel double channel reverse conducting GaN HEMT with an integrated MOS-channel diode

Xintong Xie(谢欣桐), Cheng Zhang(张成), Zhijia Zhao(赵智家), Jie Wei(魏杰),Xiaorong Luo(罗小蓉), and Bo Zhang(张波)
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A novel normally-off double channel reverse conducting (DCRC) HEMT with an integrated MOS-channel diode (MCD) is proposed and investigated by TCAD simulation. The proposed structure has two features: one is double heterojunctions to form dual 2DEG channels named the 1st path and the 2nd path for reverse conduction, and the other is the MCD forming by the trench source metal, source dielectric, and GaN. At the initial reverse conduction stage, the MCD acts as a switch to control the 1st path which would be turned on prior to the 2nd path. Because of the introduction of the 1st path, the DCRC-HEMT has an additional reverse conducting channel to help enhance the reverse conduction performance. Compared with the conventional HEMT (Conv. HEMT), the DCRC-HEMT can obtain a low reverse turn-on voltage (VRT) and its VRT is independent of the gate-source bias (VGS) at the same time. The DCRC-HEMT achieves the VRT of 0.62 V, which is 59.7% and 75.9% lower than that of the Conv. HEMT at VGS = 0 V and -1 V, respectively. In addition, the forward conduction capability and blocking characteristics almost remain unchanged. In the end, the key fabrication flows of DCRC-HEMT are presented.
Keywords:  AlGaN/GaN      HEMT      double-channel      reverse conduction  
Received:  25 February 2023      Revised:  22 May 2023      Accepted manuscript online:  28 June 2023
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  51.50.+v (Electrical properties)  
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 61874149 and U20A20208) and the Outstanding Youth Science and Technology Foundation of China (Grant No. 2018-JCJQ-ZQ-060).
Corresponding Authors:  Xiaorong Luo     E-mail:  xrluo@uestc.edu.cn

Cite this article: 

Xintong Xie(谢欣桐), Cheng Zhang(张成), Zhijia Zhao(赵智家), Jie Wei(魏杰),Xiaorong Luo(罗小蓉), and Bo Zhang(张波) Novel double channel reverse conducting GaN HEMT with an integrated MOS-channel diode 2023 Chin. Phys. B 32 098506

[1] Chen K J, Häberlen O, et al. 2017 IEEE Transactions on Electron Devices 64 779
[2] Rupp R, Laska T, Häberlen O, et al. 2014 IEEE International Electron Devices Meeting, December 15-17, 2014, San Francisco, CA, USA, p. 2.3.1
[3] Chow T P and Tyagi R 1993 International Symposium on Power Semiconductor Devices and ICs, May 18-20, 1993, Monterey, CA, USA, p. 84
[4] Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
[5] Linder S 2006 Power semiconductors, 1st edn. (New York: EPFL Press)
[6] Lidow A, De Rooij M, et al. 2019 GaN transistors for efficient power conversion, 3rd edn. (Chichester: John Wiley and Sons)
[7] Sorensen C, Fogsgaard M L, et al. 2015 International Symposium on Power Electronics for Distributed Generation Systems, June 22-25, 2015, Aachen, Germany, p. 1
[8] Morita T, Tamura S, et al. 2011 IEEE Applied Power Electronics Conference and Exposition, March 6-11, 2011, Fort Worth, TX, USA, p. 481
[9] Das J, Everts J, et al. 2011 IEEE Electron Device Lett. 32 1370
[10] Reiner R, Waltereit P, et al. 2015 IEEE International Symposium on Power Semiconductor Devices & ICs, May 10-14, 2015, Hong Kong, China, p. 45
[11] Zhu R, Zhou Q, et al. 2018 IEEE International Symposium on Power Semiconductor Devices and ICs, May 13-17, 2018, Chicago, IL, USA, p. 212
[12] Kachi T, Kanechika M and Uesugi T 2011 IEEE Compound Semiconductor Integrated Circuit Symposium, October 16-19, 2011, Waikoloa, HI, USA, p. 1
[13] Park B R, Lee J G and Cha H Y 2013 Appl. Phys. Expr. 6 031001
[14] Li S, Hou B, et al. 2021 IEEE Transactions on Electron Device 68 931
[15] Lei J, Wei J, et al. 2019 IEEE Transactions on Electron Devices 66 2106
[16] Yi B, Wu Z, et al. 2021 IEEE Transactions on Electron Devices 68 6039
[17] Lei J, Wei J, et al. 2017 IEEE International Electron Devices Meeting, December 02-06, 2017, San Francisco, CA, USA, p. 25.2.1
[18] Zhang L, Wei J, et al. 2020 IEEE Electron Device Lett. 41 341
[19] Zhang L, Wei J, et al. 2020 International Symposium on Power Semiconductor Devices and ICs, September 13-18, 2020, Vienna, Austria, p. 521
[20] Wang T, Ma J, et al. 2018 IEEE Electron Device Lett. 39 1038
[21] Hashizume T, Kotani J and Hasegawa H. 2004 Appl. Phys. Lett. 84 4884
[22] Sabui G, Parbrook P J, et al. 2016 AIP Advances 6 055006
[23] Saito Y, Tsurumaki R, et al. 2017 IEEE Transactions on Device and Materials Reliability 18 46
[24] Han S W, Song J, and Chu R. 2020 IEEE Transactions on Electron Devices 67 69
[25] Ibbetson J P, Fini P T, et al. 2000 Appl. Phys. Lett. 77 250
[26] Zhou Q, Chen B, et al. 2015 IEEE Transactions on Electron Devices 62 776
[27] Liu S, Yang S, et al. 2014 IEEE Electron Device Lett. 35 723
[1] Proton irradiation-induced dynamic characteristics on high performance GaN/AlGaN/GaN Schottky barrier diodes
Tao Zhang(张涛), Ruo-Han Li(李若晗), Kai Su(苏凯), Hua-Ke Su(苏华科), Yue-Guang Lv(吕跃广), Sheng-Rui Xu(许晟瑞), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(8): 087301.
[2] High-performance vertical GaN field-effect transistor with an integrated self-adapted channel diode for reverse conduction
Siyu Deng(邓思宇), Dezun Liao(廖德尊), Jie Wei(魏杰), Cheng Zhang(张成),Tao Sun(孙涛), and Xiaorong Luo(罗小蓉). Chin. Phys. B, 2023, 32(7): 078503.
[3] Research on self-supporting T-shaped gate structure of GaN-based HEMT devices
Peng Zhang(张鹏), Miao Li(李苗), Jun-Wen Chen(陈俊文), Jia-Zhi Liu(刘加志), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2023, 32(6): 067305.
[4] Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬). Chin. Phys. B, 2023, 32(4): 040701.
[5] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[6] Novel GaN-based double-channel p-heterostructure field-effect transistors with a p-GaN insertion layer
Xuerui Niu(牛雪锐), Bin Hou(侯斌), Meng Zhang(张濛), Ling Yang(杨凌), Mei Wu(武玫), Xinchuang Zhang(张新创), Fuchun Jia(贾富春), Chong Wang(王冲), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(10): 108101.
[7] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[8] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[9] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[10] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[11] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[12] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[13] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[14] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[15] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
No Suggested Reading articles found!