Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047303    DOI: 10.1088/1674-1056/ac2b1d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation

Shi-Yu Feng(冯识谕)1,2, Yong-Bo Su(苏永波)1,2, Peng Ding(丁芃)1,2, Jing-Tao Zhou(周静涛)1,2, Song-Ang Peng(彭松昂)1,2, Wu-Chang Ding(丁武昌)1,2,†, and Zhi Jin(金智)1,2
1 University of Chinese Academic of Sciences, Beijing 100029, China;
2 High-Frequency High-Voltage Device and Integrated Circuits Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  With the widespread utilization of indium-phosphide-based high-electron-mobility transistors (InP HEMTs) in the millimeter-wave (mmW) band, the distributed and high-frequency parasitic coupling behavior of the device is particularly prominent. We present an InP HEMT extrinsic parasitic equivalent circuit, in which the conductance between the device electrodes and a new gate-drain mutual inductance term Lmgd are taken into account for the high-frequency magnetic field coupling between device electrodes. Based on the suggested parasitic equivalent circuit, through HFSS and advanced design system (ADS) co-simulation, the equivalent circuit parameters are directly extracted in the multi-step system. The HFSS simulation prediction, measurement data, and modeled frequency response are compared with each other to verify the feasibility of the extraction method and the accuracy of the equivalent circuit. The proposed model demonstrates the distributed and radio-frequency behavior of the device and solves the problem that the equivalent circuit parameters of the conventional InP HEMTs device are limited by the device model and inaccurate at high frequencies when being extracted.
Keywords:  extrinsic equivalent circuit modeling      InP HEMT      HFSS and ADS co-simulation      S-parameters  
Received:  13 July 2021      Revised:  24 September 2021      Accepted manuscript online:  29 September 2021
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61434006 and 61704189) and the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences.
Corresponding Authors:  Wu-Chang Ding     E-mail:  dingwuchang@ime.ac.cn

Cite this article: 

Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智) Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation 2022 Chin. Phys. B 31 047303

[1] Zhang J J, Ding P, Jin Y N, Meng S H, Zhao X Q, Hu Y F, Zhong Y H and Jin Z 2021 Chin. Phys. B 30 070702
[2] Zhong Y H, Yang B, Chang M M, Ding P, Ma L H, Li M K, Duan Z Y, Yang J, Jin Z and Wei Z C 2020 Chin. Phys. B 29 038502
[3] Sun S X, Chang M M, Li M K, Ma L H, Zhong Y H, Li Y X, Ding P, Jin Z and Wei Z C 2019 Chin. Phys. B 28 078501
[4] Reck T, Zemora A, Schlecht E, Dengler R, Deal W and Chattopadhyay G 2016 IEEE Trans. THz Sci. Technol. 6 141
[5] Ding W C, Ding P, Su Y B, Zhou J T, Yang F, Hu J, Peng S G, Shi J Y, Zhang D Y and Jin Z 2020 Int J. Rf. Microw. C E 30 e22218
[6] Kooi J W, Reck T J, Reeves R A, Fung A K, Samoska L A, Varonen M, Deal W R, Mei X B, Lai R and Jarnot R F 2017 IEEE Trans. THz Sci. Technol. 7 335
[7] Masuda S, Takahashi T and Joshin K. 2003 IEEE J. Solid-State Circuits 38 1479
[8] Alt A R, Marti D and Bolognesi C R 2013 IEEE Microw. Mag. 14 83
[9] Zhong Y H, Wang W B, Yang J, Sun S X, Chang M M, Duan Z Y, Jin Z and Ding P 2020 Solid-State Electronics 164 107613
[10] Zhong Y H, Li K K, Li M K, Wang W B, Sun S X, Li H L, Ding P and Jin Z 2018 J. Infrared. Milli. W 37 163
[11] S H Meng, S X Sun, P Ding, J Zhang, B Yang, Z C Wei, Y H Zhong and Z Jin 2021 Semicond. Sci. Technol. 36 095029
[12] Jarndal A, Markos A Z and Kompa G 2011 IEEE Trans. Microw. Theory Techn. 59 644
[13] Zhou S X, Qi M, Ai L K, Xu A H, Wang L D, Ding P and Jin Z 2015 Chin. Phys. Lett. 32 097101
[14] Cha E, Moschetti G, Wadefalk N, Nilsson, Per-Ake, Bevilacqua S, Pourkabirian A, Starski P and Grahn J 2017 IEEE Trans. Microw. Theory Techn. 65 5171
[15] Karisan Y, Caglayan C, Trichopoulos G C and Sertel K 2016 IEEE Trans. Microw. Theory Techn. 64 1
[16] Miras A and Legros E 1997 IEEE Trans. Microw. Theory Techn. 45 1018
[17] Caddemi A, Crupi G and Donato N 2006 IEEE Trans. Instrum. Meas. 55 465
[18] Brady R G, Oxley C H and Brazil T J 2008 IEEE Trans. Microw. Theory Techn. 56 1535
[19] Cao M Y, Lu Y, Wei J X, Chen Y H, Li W J, Zheng J X, Ma X H and Hao Y 2014 Chin. Phys. B 23 087201
[20] Zheng J and Hahm Y C 2000 IEEE Trans. Microw. Theory Techn. 48 1443
[21] Miranda J M, Fager C, Zirath H, Sakalas P, Munoz S and Sebastian J L 2002 IEEE Trans. Instrum. Meas. 51 650
[22] Chen G, Kumar V, Schwindt R S and Adesida I 2006 IEEE Trans. Microw. Theory Techn. 54 2949
[23] Fan Q, Leach J H and Morkoc H 2010 Proc. IEEE 98 1140
[24] Jia Y, Xu Y, Xu R and Li Y 2018 Int. J. Numer. Model. El 31 e2270
[1] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[2] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[3] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
No Suggested Reading articles found!