INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Novel GaN-based double-channel p-heterostructure field-effect transistors with a p-GaN insertion layer |
Xuerui Niu(牛雪锐)1, Bin Hou(侯斌)1,†, Meng Zhang(张濛)1, Ling Yang(杨凌)1,‡, Mei Wu(武玫)1, Xinchuang Zhang(张新创)2, Fuchun Jia(贾富春)1, Chong Wang(王冲)1, Xiaohua Ma(马晓华)1, and Yue Hao(郝跃)1 |
1 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China; 2 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China |
|
|
Abstract GaN-based p-channel heterostructure field-effect transistors (p-HFETs) face significant constraints on on-state currents compared with n-channel high electron mobility transistors. In this work, we propose a novel double heterostructure which introduces an additional p-GaN insertion layer into traditional p-HFETs. The impact of the device structure on the hole densities and valence band energies of both the upper and lower channels is analyzed by using Silvaco TACD simulations, including the thickness of the upper AlGaN layer and the doping impurities and concentration in the GaN buffer layer, as well as the thickness and Mg-doping concentration in the p-GaN insertion layer. With the help of the p-GaN insertion layer, the C-doping concentration in the GaN buffer layer can be reduced, while the density of the two-dimensional hole gas in the lower channel is enhanced at the same time. This work suggests that a double heterostructure with a p-GaN insertion layer is a better approach to improve p-HFETs compared with those devices with C-doped buffer layer alone.
|
Received: 19 September 2022
Revised: 23 February 2023
Accepted manuscript online: 28 March 2023
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62104184, 62234009, 62090014, 62188102, 62104178, and 62104179), the Fundamental Research Funds for the Central Universities of China (Grant Nos. YJSJ23019, XJSJ23047, and ZDRC2002), the China National Postdoctoral Program for Innovative Talents (Grant No. BX20200262), and the China Postdoctoral Science Foundation (Grant No. 2021M692499) |
Corresponding Authors:
Bin Hou, Ling Yang
E-mail: bhou@xidian.edu.cn;yangling@xidian.edu.cn
|
Cite this article:
Xuerui Niu(牛雪锐), Bin Hou(侯斌), Meng Zhang(张濛), Ling Yang(杨凌), Mei Wu(武玫), Xinchuang Zhang(张新创), Fuchun Jia(贾富春), Chong Wang(王冲), Xiaohua Ma(马晓华), and Yue Hao(郝跃) Novel GaN-based double-channel p-heterostructure field-effect transistors with a p-GaN insertion layer 2023 Chin. Phys. B 32 108101
|
[1] Zhu M H, Ma J, and Matioli E 2020 Proc. 32nd ISPSD, September 13-18, 2020, Vienna, Austria, p. 345 [2] Jiang H X, Lyu Q F, Zhu R Q, Xiang P, Cheng K and Lau K M 2021 IEEE Trans. Electron Dev. 68 653 [3] Bader S J, Lee H, Chaudhuri R, Huang S, Hickman A, Molnar A, Xing H G, Jena D, Then H W, Chowdhury N and Palacios T 2020 IEEE Trans. Electron Dev. 67 4010 [4] Reusch D and Strydom J 2013 IEEE Trans. Power Electron 29 2008 [5] Chu R, Cao Y, Chen M, Li R and Zehnder D 2016 IEEE Electron Dev. Lett. 37 269 [6] Sun R Z, Liang Y C, Yeo Y C, Zhao C Z, Chen W J and Zhang B 2020 IEEE Trans. Emerg. Sel. Topics Power Electron. 8 31 [7] Xu H, Tang G F, Wei J, Zheng Z Y and Chen K J 2022 IEEE Trans. Ind. Electron. 69 6784 [8] Cai Y, Cheng Z, Yang Z, Tang C W, Lau K M and Chen K J 2007 IEEE Electron Dev. Lett. 28 328 [9] Xu Z, Wang J Y, Cai Y, Liu J Q, Yang Z, Li X P, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J J and Hao Y 2014 IEEE Electron Dev. Lett. 35 33 [10] Chowdhury N, Xie Q Y and Palacios T 2022 IEEE Electron Dev. Lett. 43 358 [11] Bader S J, Chaudhuri R, Hickman A, Nomoto K, Bharadwaj S, Then H W, Xing H G and Jena D 2019 Proc. IEEE Int. Electron. Devices Meeting (IEDM), December 7-11, 2019, San Francisco, CA, p. 4.5.1 [12] Nomoto K, Chaudhuri R, Bader S J, Li L, Hickman A, Huang S, Lee H, Maeda T, Then H W, Radosavljevic M, Fischer P, Molnar A, Hwang J C M, Xing H G and Jena D 2020 Proc. IEEE Int. Electron. Devices Meeting (IEDM), December 12-18, 2020, San Francisco, CA, p. 8.3.1 [13] Raj A, Krishna A, Hatui N, Gupta C, Jang R, Keller S and Mishra U K 2020 IEEE Electron Dev. Lett. 41 220 [14] Raj A, Krishna A, Hatui N, Romanczyk B, Wurm C, Guidry M, Hamwey R, Pakala N, Keller S and Mishra U K 2021 Proc. IEEE Int. Electron. Devices Meeting (IEDM), December 11-15, 2021, San Francisco, CA, p. 5.4.1 [15] Chowdhury N, Xie Q, Niroula J, Rajput N S, Cheng K, Then H W and Palacios T 2020 Proc. IEEE Int. Electron. Devices Meeting (IEDM), December 12-18, 2020, San Francisco, CA, p. 5.5.1 [16] Raja P V, Bouslama M, Sarkar S, Pandurang K R, Nallatamby J C, DasGupta N and DasGupta A 2020 IEEE Trans. Electron Dev. 67 2304 [17] Jia F C, Ma X H, Yang L, Hou B, Zhang M, Zhu Q, Wu M, Mi M H, Zhu J J, Liu S Y and Hao Y 2021 IEEE Trans. Electron Dev. 68 6069 [18] Yacoub H, Mauder C, Leone S, Eickelkamp M, Fahle D, Heuken M, Kalisch H and Vescan A 2017 IEEE Trans. Electron Dev. 64 991 [19] Cardwell D W, Sasikumar A, Arehart R, Kaun W, Lu J, Keller S, Speck J S, Mishra U K, Ringel S A and Pelz J P 2013 Appl. Phys. Lett. 102 193509 [20] International S 2015 Atlas User's Manual: Device Simulation Software (Santa Clara, CA, USA: Silvaco Inc.), pp. 117-119 [21] Kang H S, Won C H, Kim Y J, Kim D S, Yoon Y J, Kang I M, Lee Y S and Lee J H 2015 Phys. Status Solidi A 212 1116 [22] Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini M and Zanoni E 2008 IEEE Trans. Device Mater. Rel. 8 332 [23] Uren M J, Möreke J and Kuball M 2012 IEEE Trans. Electron Dev. 59 3327 [24] Yang S, Huang S, Wei J, Zheng Z, Wang Y, He J and Chen K J 2020 IEEE Electron Dev. Lett. 41 685 [25] Lu B, Saadat O I and Palacios T 2010 IEEE Electron Device Lett. 31 990 [26] Yatabe Z, Hori Y, Ma W C, Asubar J T, Akazawa M, Sato T and Hashizume T 2014 Jpn. J. Appl. Phys. 53 100213 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|