Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 108101    DOI: 10.1088/1674-1056/acc7f4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Novel GaN-based double-channel p-heterostructure field-effect transistors with a p-GaN insertion layer

Xuerui Niu(牛雪锐)1, Bin Hou(侯斌)1,†, Meng Zhang(张濛)1, Ling Yang(杨凌)1,‡, Mei Wu(武玫)1, Xinchuang Zhang(张新创)2, Fuchun Jia(贾富春)1, Chong Wang(王冲)1, Xiaohua Ma(马晓华)1, and Yue Hao(郝跃)1
1 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
Abstract  GaN-based p-channel heterostructure field-effect transistors (p-HFETs) face significant constraints on on-state currents compared with n-channel high electron mobility transistors. In this work, we propose a novel double heterostructure which introduces an additional p-GaN insertion layer into traditional p-HFETs. The impact of the device structure on the hole densities and valence band energies of both the upper and lower channels is analyzed by using Silvaco TACD simulations, including the thickness of the upper AlGaN layer and the doping impurities and concentration in the GaN buffer layer, as well as the thickness and Mg-doping concentration in the p-GaN insertion layer. With the help of the p-GaN insertion layer, the C-doping concentration in the GaN buffer layer can be reduced, while the density of the two-dimensional hole gas in the lower channel is enhanced at the same time. This work suggests that a double heterostructure with a p-GaN insertion layer is a better approach to improve p-HFETs compared with those devices with C-doped buffer layer alone.
Keywords:  GaN      double-channel heterostructure field-effect transistors      p-GaN insertion layer      C-doped buffer layer  
Received:  19 September 2022      Revised:  23 February 2023      Accepted manuscript online:  28 March 2023
PACS:  81.05.Ea (III-V semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62104184, 62234009, 62090014, 62188102, 62104178, and 62104179), the Fundamental Research Funds for the Central Universities of China (Grant Nos. YJSJ23019, XJSJ23047, and ZDRC2002), the China National Postdoctoral Program for Innovative Talents (Grant No. BX20200262), and the China Postdoctoral Science Foundation (Grant No. 2021M692499)
Corresponding Authors:  Bin Hou, Ling Yang     E-mail:  bhou@xidian.edu.cn;yangling@xidian.edu.cn

Cite this article: 

Xuerui Niu(牛雪锐), Bin Hou(侯斌), Meng Zhang(张濛), Ling Yang(杨凌), Mei Wu(武玫), Xinchuang Zhang(张新创), Fuchun Jia(贾富春), Chong Wang(王冲), Xiaohua Ma(马晓华), and Yue Hao(郝跃) Novel GaN-based double-channel p-heterostructure field-effect transistors with a p-GaN insertion layer 2023 Chin. Phys. B 32 108101

[1] Zhu M H, Ma J, and Matioli E 2020 Proc. 32nd ISPSD, September 13-18, 2020, Vienna, Austria, p. 345
[2] Jiang H X, Lyu Q F, Zhu R Q, Xiang P, Cheng K and Lau K M 2021 IEEE Trans. Electron Dev. 68 653
[3] Bader S J, Lee H, Chaudhuri R, Huang S, Hickman A, Molnar A, Xing H G, Jena D, Then H W, Chowdhury N and Palacios T 2020 IEEE Trans. Electron Dev. 67 4010
[4] Reusch D and Strydom J 2013 IEEE Trans. Power Electron 29 2008
[5] Chu R, Cao Y, Chen M, Li R and Zehnder D 2016 IEEE Electron Dev. Lett. 37 269
[6] Sun R Z, Liang Y C, Yeo Y C, Zhao C Z, Chen W J and Zhang B 2020 IEEE Trans. Emerg. Sel. Topics Power Electron. 8 31
[7] Xu H, Tang G F, Wei J, Zheng Z Y and Chen K J 2022 IEEE Trans. Ind. Electron. 69 6784
[8] Cai Y, Cheng Z, Yang Z, Tang C W, Lau K M and Chen K J 2007 IEEE Electron Dev. Lett. 28 328
[9] Xu Z, Wang J Y, Cai Y, Liu J Q, Yang Z, Li X P, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J J and Hao Y 2014 IEEE Electron Dev. Lett. 35 33
[10] Chowdhury N, Xie Q Y and Palacios T 2022 IEEE Electron Dev. Lett. 43 358
[11] Bader S J, Chaudhuri R, Hickman A, Nomoto K, Bharadwaj S, Then H W, Xing H G and Jena D 2019 Proc. IEEE Int. Electron. Devices Meeting (IEDM), December 7-11, 2019, San Francisco, CA, p. 4.5.1
[12] Nomoto K, Chaudhuri R, Bader S J, Li L, Hickman A, Huang S, Lee H, Maeda T, Then H W, Radosavljevic M, Fischer P, Molnar A, Hwang J C M, Xing H G and Jena D 2020 Proc. IEEE Int. Electron. Devices Meeting (IEDM), December 12-18, 2020, San Francisco, CA, p. 8.3.1
[13] Raj A, Krishna A, Hatui N, Gupta C, Jang R, Keller S and Mishra U K 2020 IEEE Electron Dev. Lett. 41 220
[14] Raj A, Krishna A, Hatui N, Romanczyk B, Wurm C, Guidry M, Hamwey R, Pakala N, Keller S and Mishra U K 2021 Proc. IEEE Int. Electron. Devices Meeting (IEDM), December 11-15, 2021, San Francisco, CA, p. 5.4.1
[15] Chowdhury N, Xie Q, Niroula J, Rajput N S, Cheng K, Then H W and Palacios T 2020 Proc. IEEE Int. Electron. Devices Meeting (IEDM), December 12-18, 2020, San Francisco, CA, p. 5.5.1
[16] Raja P V, Bouslama M, Sarkar S, Pandurang K R, Nallatamby J C, DasGupta N and DasGupta A 2020 IEEE Trans. Electron Dev. 67 2304
[17] Jia F C, Ma X H, Yang L, Hou B, Zhang M, Zhu Q, Wu M, Mi M H, Zhu J J, Liu S Y and Hao Y 2021 IEEE Trans. Electron Dev. 68 6069
[18] Yacoub H, Mauder C, Leone S, Eickelkamp M, Fahle D, Heuken M, Kalisch H and Vescan A 2017 IEEE Trans. Electron Dev. 64 991
[19] Cardwell D W, Sasikumar A, Arehart R, Kaun W, Lu J, Keller S, Speck J S, Mishra U K, Ringel S A and Pelz J P 2013 Appl. Phys. Lett. 102 193509
[20] International S 2015 Atlas User's Manual: Device Simulation Software (Santa Clara, CA, USA: Silvaco Inc.), pp. 117-119
[21] Kang H S, Won C H, Kim Y J, Kim D S, Yoon Y J, Kang I M, Lee Y S and Lee J H 2015 Phys. Status Solidi A 212 1116
[22] Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini M and Zanoni E 2008 IEEE Trans. Device Mater. Rel. 8 332
[23] Uren M J, Möreke J and Kuball M 2012 IEEE Trans. Electron Dev. 59 3327
[24] Yang S, Huang S, Wei J, Zheng Z, Wang Y, He J and Chen K J 2020 IEEE Electron Dev. Lett. 41 685
[25] Lu B, Saadat O I and Palacios T 2010 IEEE Electron Device Lett. 31 990
[26] Yatabe Z, Hori Y, Ma W C, Asubar J T, Akazawa M, Sato T and Hashizume T 2014 Jpn. J. Appl. Phys. 53 100213
[1] Novel double channel reverse conducting GaN HEMT with an integrated MOS-channel diode
Xintong Xie(谢欣桐), Cheng Zhang(张成), Zhijia Zhao(赵智家), Jie Wei(魏杰), Xiaorong Luo(罗小蓉), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(9): 098506.
[2] Proton irradiation-induced dynamic characteristics on high performance GaN/AlGaN/GaN Schottky barrier diodes
Tao Zhang(张涛), Ruo-Han Li(李若晗), Kai Su(苏凯), Hua-Ke Su(苏华科), Yue-Guang Lv(吕跃广), Sheng-Rui Xu(许晟瑞), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(8): 087301.
[3] Assessing high-energy x-ray and proton irradiation effects on electrical properties of P-GaN and N-GaN thin films
Aoxue Zhong(钟傲雪), Lei Wang(王磊), Yun Tang(唐蕴), Yongtao Yang(杨永涛), Jinjin Wang(王进进), Huiping Zhu(朱慧平), Zhenping Wu(吴真平), Weihua Tang(唐为华), and Bo Li(李博). Chin. Phys. B, 2023, 32(7): 076102.
[4] High-performance vertical GaN field-effect transistor with an integrated self-adapted channel diode for reverse conduction
Siyu Deng(邓思宇), Dezun Liao(廖德尊), Jie Wei(魏杰), Cheng Zhang(张成),Tao Sun(孙涛), and Xiaorong Luo(罗小蓉). Chin. Phys. B, 2023, 32(7): 078503.
[5] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[6] Research on self-supporting T-shaped gate structure of GaN-based HEMT devices
Peng Zhang(张鹏), Miao Li(李苗), Jun-Wen Chen(陈俊文), Jia-Zhi Liu(刘加志), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2023, 32(6): 067305.
[7] Optically pumped wavelength-tunable lasing from a GaN beam cavity with an integrated Joule heater pivoted on Si
Feifei Qin(秦飞飞), Yang Sun(孙阳), Ying Yang(杨颖), Xin Li(李欣), Xu Wang(王旭), Junfeng Lu(卢俊峰), Yongjin Wang(王永进), and Gangyi Zhu(朱刚毅). Chin. Phys. B, 2023, 32(5): 054210.
[8] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[9] Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬). Chin. Phys. B, 2023, 32(4): 040701.
[10] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[11] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[12] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[13] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[14] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[15] Low-damage interface enhancement-mode AlN/GaN high electron mobility transistors with 41.6% PAE at 30 GHz
Si-Yu Liu(刘思雨), Jie-Jie Zhu(祝杰杰), Jing-Shu Guo(郭静姝), Kai Cheng(程凯), Min-Han Mi(宓珉瀚), Ling-Jie Qin(秦灵洁), Bo-Wen Zhang(张博文), Min Tang(唐旻), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2023, 32(11): 117302.
No Suggested Reading articles found!