Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087401    DOI: 10.1088/1674-1056/acd3e3
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Xiamen University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Xiamen University Prev   Next  

Customizing topological phases in the twisted bilayer superconductors with even-parity pairings

Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪)
Department of Physics, Xiamen University, Xiamen 361005, China
Abstract  We investigate the topological properties of twisted bilayer superconductors with different even-parity pairings in each layer. In the presence of spin-orbit coupling, the Hamiltonian is mapped into an effective odd-parity superconductor. Based on this, we deduce the topological properties by examining the relative configuration between Fermi surface and Dirac pairing node. We show that mixed Rashba and Dresselhaus spin-orbit coupling and anisotropic hopping terms, which break the C4 symmetry of the Fermi surface, can induce first-order topological superconductors with non-zero bulk Chern number. This provides a versatile way to control the topological phases of bilayer superconductors by adjusting the twisted angle and chemical potential. We demonstrate our results using a typical twisted angle of 53.13°, at which the translation symmetry is restored and the Chern number and edge state are calculated using the Moiré momentum.
Keywords:  topological superconductors      bilayer superconductors      twistronics      spin-orbit coupling  
Received:  02 April 2023      Revised:  10 May 2023      Accepted manuscript online:  10 May 2023
PACS:  74.78.Fk (Multilayers, superlattices, heterostructures)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
Fund: Stimulating discussions with Zhenghao Yang are gratefully acknowledged.Project supported by the National Natural Science Foundation of China (Grant No.11974293).
Corresponding Authors:  Xiancong Lu     E-mail:  xlu@xmu.edu.cn

Cite this article: 

Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪) Customizing topological phases in the twisted bilayer superconductors with even-parity pairings 2023 Chin. Phys. B 32 087401

[1] Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501
[2] Stern A and Lindner N H 2013 Science 339 1179
[3] Pfaff W, Hensen B J, Bernien H, Van Dam S B, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J and Hanson R 2014 Science 345 532
[4] Freedman M H, Kitaev A Y, Larsen M and Wang Z 2001 Bulletin of the American Mathematical Society 40 31
[5] Tewari S, Das Sarma S, Nayak C, Zhang Chuanwei and Zoller P 2007 Phys. Rev. Lett. 98 010506
[6] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[7] Can O, Tummuru T, Day R P, Elfimov I, Damascelli A and Franz M 2021 Nat. Phys. 17 519
[8] Yang Z, Qin S, Zhang Q, Fang C and Hu J 2018 Phys. Rev. B 98 104515
[9] Tummuru T R, Lantagne-Hurtubise E and Franz M 2022 Phys. Rev. B 106 014520
[10] Song X Y, Zhang Y H and Vishwanath A 2022 Phys. Rev. B 105 L201102
[11] Mercado A, Sahoo S and Franz M 2022 Phys. Rev. Lett. 128 137002
[12] Margalit G, Yan B, Franz M and Oreg Y 2022 Phys. Rev. B 106 205424
[13] Sato M, Takahashi Y and Fujimoto S 2010 Phys. Rev. B 82 134521
[14] Sato M, Takahashi Y and Fujimoto S 2009 Phys. Rev. Lett. 103 020401
[15] Laughlin R B 1998 Phys. Rev. Lett. 80 5188
[16] Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H and Zhang Y 2019 Nature 575 156
[17] Lee W C, Zhang S C and Wu C 2009 Phys. Rev. Lett. 102 217002
[18] Ishida K, Nakai Y and Hosono H 2010 J. Phys. Soc. Jpn. 78 062001
[19] Mazin I I 2010 Nature. 464 183
[20] Zhu X 2019 Phys. Rev. Lett. 122 236401
[21] Kheirkhah M, Yan Z, Nagai Y and Marsiglio F 2020 Phys. Rev. Lett. 125 017001
[22] Gotlieb K, Lin C Y, Serbyn M, Zhang W, Smallwood C L, Jozwiak C, Eisaki H, Hussain Z, Vishwanath A and Lanzara A 2018 Science 362 1271
[23] Park M J, Kim Y, Cho G Y and Lee S 2019 Phys. Rev. Lett. 123 216803
[24] Kindermann M 2015 Phys. Rev. Lett. 114 226802
[25] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
[26] Hejazi K, Liu C, Shapourian H, Chen X and Balents L 2019 Phys. Rev. B 99 035111
[27] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674
[28] Sato M 2010 Phys. Rev. B 81 220504
[29] Yan Z 2019 Phys. Rev. Lett. 123 177001
[30] Hai K, Zhu W, Chen Q and Hai W 2020 Chin. Phys. B 29 083203
[31] Dong B, Yang T and Han Z 2020 Chin. Phys. B 29 097307
[32] Volkov P A, Zhao F S Y, Poccia N, Cui X, Kim P and Pixley J H 2021 arXiv: 2108.13456 [cond-mat.supr-con]
[33] Volkov P A, Wilson J H, Lucht K P and Pixley J H 2023 Phys. Rev. Lett. 130 186001
[1] Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting
Bin-Hao Du(杜彬豪), Mou Yang(杨谋), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2023, 32(7): 077201.
[2] Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer
Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军). Chin. Phys. B, 2023, 32(4): 048504.
[3] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[4] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[5] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[6] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[7] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[8] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[9] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[10] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[11] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[12] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[13] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[14] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!