|
Abstract We investigate the topological properties of twisted bilayer superconductors with different even-parity pairings in each layer. In the presence of spin-orbit coupling, the Hamiltonian is mapped into an effective odd-parity superconductor. Based on this, we deduce the topological properties by examining the relative configuration between Fermi surface and Dirac pairing node. We show that mixed Rashba and Dresselhaus spin-orbit coupling and anisotropic hopping terms, which break the C4 symmetry of the Fermi surface, can induce first-order topological superconductors with non-zero bulk Chern number. This provides a versatile way to control the topological phases of bilayer superconductors by adjusting the twisted angle and chemical potential. We demonstrate our results using a typical twisted angle of 53.13°, at which the translation symmetry is restored and the Chern number and edge state are calculated using the Moiré momentum.
|
Received: 02 April 2023
Revised: 10 May 2023
Accepted manuscript online: 10 May 2023
|
PACS:
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
Fund: Stimulating discussions with Zhenghao Yang are gratefully acknowledged.Project supported by the National Natural Science Foundation of China (Grant No.11974293). |
Corresponding Authors:
Xiancong Lu
E-mail: xlu@xmu.edu.cn
|
Cite this article:
Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪) Customizing topological phases in the twisted bilayer superconductors with even-parity pairings 2023 Chin. Phys. B 32 087401
|
[1] Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501 [2] Stern A and Lindner N H 2013 Science 339 1179 [3] Pfaff W, Hensen B J, Bernien H, Van Dam S B, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J and Hanson R 2014 Science 345 532 [4] Freedman M H, Kitaev A Y, Larsen M and Wang Z 2001 Bulletin of the American Mathematical Society 40 31 [5] Tewari S, Das Sarma S, Nayak C, Zhang Chuanwei and Zoller P 2007 Phys. Rev. Lett. 98 010506 [6] Ivanov D A 2001 Phys. Rev. Lett. 86 268 [7] Can O, Tummuru T, Day R P, Elfimov I, Damascelli A and Franz M 2021 Nat. Phys. 17 519 [8] Yang Z, Qin S, Zhang Q, Fang C and Hu J 2018 Phys. Rev. B 98 104515 [9] Tummuru T R, Lantagne-Hurtubise E and Franz M 2022 Phys. Rev. B 106 014520 [10] Song X Y, Zhang Y H and Vishwanath A 2022 Phys. Rev. B 105 L201102 [11] Mercado A, Sahoo S and Franz M 2022 Phys. Rev. Lett. 128 137002 [12] Margalit G, Yan B, Franz M and Oreg Y 2022 Phys. Rev. B 106 205424 [13] Sato M, Takahashi Y and Fujimoto S 2010 Phys. Rev. B 82 134521 [14] Sato M, Takahashi Y and Fujimoto S 2009 Phys. Rev. Lett. 103 020401 [15] Laughlin R B 1998 Phys. Rev. Lett. 80 5188 [16] Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H and Zhang Y 2019 Nature 575 156 [17] Lee W C, Zhang S C and Wu C 2009 Phys. Rev. Lett. 102 217002 [18] Ishida K, Nakai Y and Hosono H 2010 J. Phys. Soc. Jpn. 78 062001 [19] Mazin I I 2010 Nature. 464 183 [20] Zhu X 2019 Phys. Rev. Lett. 122 236401 [21] Kheirkhah M, Yan Z, Nagai Y and Marsiglio F 2020 Phys. Rev. Lett. 125 017001 [22] Gotlieb K, Lin C Y, Serbyn M, Zhang W, Smallwood C L, Jozwiak C, Eisaki H, Hussain Z, Vishwanath A and Lanzara A 2018 Science 362 1271 [23] Park M J, Kim Y, Cho G Y and Lee S 2019 Phys. Rev. Lett. 123 216803 [24] Kindermann M 2015 Phys. Rev. Lett. 114 226802 [25] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 [26] Hejazi K, Liu C, Shapourian H, Chen X and Balents L 2019 Phys. Rev. B 99 035111 [27] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674 [28] Sato M 2010 Phys. Rev. B 81 220504 [29] Yan Z 2019 Phys. Rev. Lett. 123 177001 [30] Hai K, Zhu W, Chen Q and Hai W 2020 Chin. Phys. B 29 083203 [31] Dong B, Yang T and Han Z 2020 Chin. Phys. B 29 097307 [32] Volkov P A, Zhao F S Y, Poccia N, Cui X, Kim P and Pixley J H 2021 arXiv: 2108.13456 [cond-mat.supr-con] [33] Volkov P A, Wilson J H, Lucht K P and Pixley J H 2023 Phys. Rev. Lett. 130 186001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|