Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087501    DOI: 10.1088/1674-1056/accb49
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Critical behavior in the itinerant ferromagnet SmMn2Ge2

Qingyi Hou(侯清漪)1,2,†, Meng Song(宋猛)1,2,†, Xitong Xu(许锡童)1, Yihao Wang(王宜豪)1, Chao Dong(董超)3, Yinfa Feng(冯寅发)3, Miao He(何苗)1,2, Yonglai Liu(刘永来)1,2, Liang Cao(曹亮)1, Junfeng Wang(王俊峰)3, Zhe Qu(屈哲)1,2,‡, and Yimin Xiong(熊奕敏)4,5,§
1. Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, High Magnetic Field Laboratory of Chinese Academy of Sciences(CHMFL), HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
2. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China;
3. Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
4. Department of Physics, School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China;
5. Hefei National Laboratory, Hefei 230028, China
Abstract  Transition metal and rare earth intermetallics have been a fertile playground for research of various quantum states. We report detailed magnetic studies on SmMn2Ge2, an anisotropic itinerant magnet with multiple magnetic phases. The critical behavior of the ferromagnetic phase transition is investigated by employing the modified Arrott plot with the Kouvel-Fisher method. The critical temperature TC is determined to be around 342.7 K with critical exponents of β =0.417 and γ=1.122, and the interaction function is found to be J(r)~ r-4.68, suggesting the coexistence of long-range and short-range magnetic interactions. Our results contribute to the understanding of complex magnetism in SmMn2Ge2, which may provide fundamental guidance in future spintronic applications.
Keywords:  critical exponent      itinerant ferromagnet      rare earth  
Received:  11 February 2023      Revised:  23 March 2023      Accepted manuscript online:  07 April 2023
PACS:  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
  75.20.En (Metals and alloys)  
  75.30.Gw (Magnetic anisotropy)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No.2021YFA1600204), the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302802), the National Natural Science Foundation of China (Grant Nos.U1832214, U2032213, 12104461, and 12074135), and the High Magnetic Field Laboratory of Anhui. Y. X. was supported by the Start-up Project of Anhui University (Grant No.S020318001/020).
Corresponding Authors:  Zhe Qu, Yimin Xiong     E-mail:  zhequ@hmfl.ac.cn;yxiong@ahu.edu.cn

Cite this article: 

Qingyi Hou(侯清漪), Meng Song(宋猛), Xitong Xu(许锡童), Yihao Wang(王宜豪), Chao Dong(董超), Yinfa Feng(冯寅发), Miao He(何苗), Yonglai Liu(刘永来), Liang Cao(曹亮), Junfeng Wang(王俊峰), Zhe Qu(屈哲), and Yimin Xiong(熊奕敏) Critical behavior in the itinerant ferromagnet SmMn2Ge2 2023 Chin. Phys. B 32 087501

[1] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W and Schäfer H 1979 Phys. Rev. Lett. 43 1892
[2] Kang J S, Allen J W, Gunnarsson O, Christensen N E, Andersen O K, Lassailly Y, Maple M B and Torikachvili M S 1990 Phys. Rev. B 41 6610
[3] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C and Coleman P 2003 Nature 424 524
[4] Welter R, Venturini G, Ressouche E and Malaman B 1995 J. Alloys Compd. 218 204
[5] Kolmakova N P, Sidorenko A A and Levitin R Z 2002 Low Temp. Phys. 28 653
[6] Hou Z, Li L, Liu C, Gao X, Ma Z, Zhou G, Peng Y, Yan M, Zhang X and Liu J 2021 Mater. Today Phys. 17 100341
[7] Xu L, Bai Y, Gong G, Song F, Li Z, Han Y, Ling L and Tian Z 2022 Phys. Rev. B 105 075108
[8] Zheng X, Zhao X, Qi J, Luo X, Ma S, Chen C, Zeng H, Yu G, Fang N, Rehman S U, Ren W, Li B and Zhong Z 2021 Appl. Phys. Lett. 118 072402
[9] Fujii H, Okamoto T, Shigeoka T and Iwata N 1985 Solid State Commun. 53 715
[10] Tomka G J, Ritter C, Riedi P C, Kapusta Cz and Kocemba W 1998 Phys. Rev. B 58 6330
[11] Koyama K, Miura S, Okada H, Shigeoka T, Fujieda S, Fujita A, Fukamichi K and Watanabe K 2006 J. Alloys Compd. 408 118
[12] Smart J S 1966 Effective field theories of magnetism (Philadelphia: Saunders)
[13] Santiago J M, Huang C and Morosan E 2017 J. Phys.: Condens. Matter 29 373002
[14] Gyorgy E M, Batlogg B, Remeika J P, van Dover R B, Fleming R M, Bair H E, Espinosa G P, Cooper A S and Maines R G 1987 J. Appl. Phys. 61 4237
[15] Zhang L 2018 Acta Phys. Sin. 6 137501 (in Chinese)
[16] Arrott A and Noakes J E 1967 Phys. Rev. Lett. 19 786
[17] Fisher M E 1967 Rep. Prog. Phys. 30 615
[18] Fisher M E 1974 Rev. Mod. Phys. 46 597
[19] Franco V, Blázquez J S and Conde A 2006 Appl. Phys. Lett. 89 222512
[20] Pecharsky V K and Gschneidner Jr K A 1999 J. Magn. Magn. Mater. 200 44
[21] Kadanoff L P 1966 Phys. Phys. Fiz. 2 263
[22] Kouvel J S and Fisher M E 1964 Phys. Rev. 136 A1626
[23] Kaul S N 1985 J. Magn. Magn. Mater. 53 5
[24] Huang K 1987 Statistical Mechanics (2nd edn.) (New York: Wiley)
[25] Fisher M E, Ma S and Nickel B G 1972 Phys. Rev. Lett. 29 917
[26] Wang X, Wang W, Hutchison W, Wang C, Hao H, Su F, Xue Y, Debnath J, Campbell S, Cheng Z and Wang J 2022 J. Alloys Compd. 909 164784
[27] Song M, Zhao J, Liu C, He M, Wang Y, Han Y, Ling L, Cao L, Zhang L, Qu Z and Xiong Y 2022 Appl. Phys. Lett. 120 092402
[1] Elemental composition x-ray fluorescence analysis with a TES-basedhigh-resolution x-ray spectrometer
Bingjun Wu(吴秉骏), Jingkai Xia(夏经铠), Shuo Zhang(张硕), Qiang Fu(傅强), Hui Zhang(章辉), Xiaoming Xie(谢晓明), and Zhi Liu(刘志). Chin. Phys. B, 2023, 32(9): 097801.
[2] Improvement of the microstructure and magnetic properties of (La,Ce)-Fe-B nanocrystalline ribbons
Li-Yu Lian(连李昱), Xiao-Wei Zhang(张晓伟), Ying Liu(刘颖), Jun Li(李军), and Ren-Quan Wang(王仁全). Chin. Phys. B, 2023, 32(7): 077501.
[3] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[4] CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
Zhaokun Dong(董昭昆), Zhen Wang(王振), Te Zhang(张特), Junsen Xiang(项俊森), Shuai Zhang(张帅), Lihua Liu(刘丽华), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117502.
[5] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[6] Critical behavior in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Tina Raoufi, Yinina Ma(马怡妮娜), Young Sun(孙阳). Chin. Phys. B, 2020, 29(6): 067503.
[7] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[8] Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber
Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋). Chin. Phys. B, 2019, 28(2): 024209.
[9] Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses
Anping Yang(杨安平), Jiahua Qiu(邱嘉桦), Mingjie Zhang(张鸣杰), Mingyang Sun(孙明阳), Zhiyong Yang(杨志勇). Chin. Phys. B, 2018, 27(7): 077105.
[10] Transition intensity calculation of Yb: YAG
Hong-Bo Zhang(张洪波), Qing-Li Zhang(张庆礼), Xing Wang(王星), Gui-Hua Sun(孙贵花), Xiao-Fei Wang(王小飞), De-Ming Zhang(张德明), Dun-Lu Sun(孙敦陆). Chin. Phys. B, 2018, 27(6): 067801.
[11] Ab initio molecular dynamics study on the local structures in Ce70Al30 and La70Al30 metallic glasses
F X Li(李福祥), J B Kong(孔吉波), M Z Li(李茂枝). Chin. Phys. B, 2018, 27(5): 056102.
[12] Electronic structure and magnetic properties of rare-earth perovskite gallates from first principles
A Dahani, H Alamri, B Merabet, A Zaoui, S Kacimi, A Boukortt, M Bejar. Chin. Phys. B, 2017, 26(1): 017101.
[13] Rare earth Ce-modified (Ti,Ce)/a-C: H carbon-based filmon WC cemented carbide substrate
Shengguo Zhou(周升国), Zhengbing Liu(刘正兵), Shuncai Wang(王顺才). Chin. Phys. B, 2017, 26(1): 018101.
[14] Band-gap engineering of La1-xNdxAlO3 (x = 0, 0.25, 0.50, 0.75, 1) perovskite using density functional theory: A modified Becke Johnson potential study
Sandeep, D P Rai, A Shankar, M P Ghimire, Anup Pradhan Sakhya, T P Sinha, R Khenata, S Bin Omran, R K Thapa. Chin. Phys. B, 2016, 25(6): 067101.
[15] Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals
Ling-Wei Li(李领伟). Chin. Phys. B, 2016, 25(3): 037502.
No Suggested Reading articles found!