Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037101    DOI: 10.1088/1674-1056/aca7eb
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F

Wenming Xue(薛文明)1,†, Jin Li(李金)2,‡, Chaoyu He(何朝宇)2, Tao Ouyang(欧阳滔)2, Xiongying Dai(戴雄英)1, and Jianxin Zhong(钟建新)2
1 School of Computational Science and Electronics, Hunan Institute of Engineering, Xiangtan 411104, China;
2 School of Physics and Optoelectronics Engineering, Xiangtan University, Xiangtan 411105, China
Abstract  Rashba spin splitting (RSS) and quantum spin Hall effect (QSHE) have attracted enormous interest due to their great significance in the application of spintronics. In this work, we theoretically proposed a new two-dimensional (2D) material H-Pb-F with coexistence of giant RSS and quantum spin Hall effec by using the ab initio calculations. Our results show that H-Pb-F possesses giant RSS (1.21 eV·Å) and the RSS can be tuned up to 4.16 eV·Å by in-plane biaxial strain, which is a huge value among 2D materials. Furthermore, we also noticed that H-Pb-F is a 2D topological insulator (TI) duo to the strong spin-orbit coupling (SOC) interaction, and the large topological gap is up to 1.35 eV, which is large enough for for the observation of topological edge states at room temperature. The coexistence of giant RSS and quantum spin Hall effect greatly broadens the potential application of H-Pb-F in the field of spintronic devices.
Keywords:  coexistence      Rashba spin splitting      quantum spin Hall effect      spin-orbit coupling  
Received:  23 September 2022      Revised:  16 November 2022      Accepted manuscript online:  02 December 2022
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874316, 11404275, and 11474244), the National Basic Research Program of China (Grant No. 2015CB921103), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2016JJ3118 and 2020JJ4244), the Scientific Research Foundation of the Education Bureau of Hunan Province, China (Grant Nos. 16K084, 17K086, and 21A049), and the Fund for the Innovative Research Team in University (Grant No. IRT13093).
Corresponding Authors:  Wenming Xue, Jin Li     E-mail:  xuewm@hnie.edu.cn;lijin@xtu.edu.cn

Cite this article: 

Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新) Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F 2023 Chin. Phys. B 32 037101

[1] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Bychkov Y A and Rashba E I 1984 J. Exp. Theor. Phys. Lett. 39 78
[3] Dresselhaus G 1955 Phys. Rev. 100 580
[4] Lu J P, Yau J B, Shukla S P and Shayegan M 1999 Phys. Rev. Lett. 81 1282
[5] Kuhlen S, Schmalbuch K, Hagedorn M, Schlammes P, Patt M, Lepsa M, Guntherodt G and Beschoten B 2012 Phys. Rev. Lett. 109 146603
[6] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[7] Qi X L, Wu Y S and Zhang S C 2006 Phys. Rev. B 74 085308
[8] Rezavand A and Ghobadi N 2021 Physica E 132 114768
[9] Peng Q, Lei Y, Deng X, Deng J, Wu G, Li J, He C Y and Zhong J X 2022 Physica E 135 114944
[10] Xue W M, Li J, Peng X Y, He C Y, Ouyang T, Zhang C X, Tang C, Li Z Q, Liu H T and Zhong J X 2019 J. Phys.: Condens. Matter 31 365002
[11] Lee K, Yun W S and Lee J D 2015 Phys. Rev. B 91 125420
[12] Xue W M, Li J, Peng X Y, He C Y, Ouyang T, Zhang C X, Tang C, Li Z Q, Lu D L and Zhong J X 2020 J. Phys. D: Appl. Phys. 53 025302
[13] Yang H, Peng X Y, Wei X L, Liu W L, Zhu W, Xiao D, Stocks G M and Zhong J X 2012 Phys. Rev. B 86 155317
[14] Varykhalov A, Sanchez-Barriga J, Shikin A M, Gudat W, Eberhardt W and Rader O 2008 Phys. Rev. Lett. 101 256601
[15] Huang S M, Badrutdinov A O, Serra L, Kodera T, Nakaoka T, Kumagai N, Arakawa Y, Tayurskii D A, Kono K and Ono K 2011 Phys. Rev. B 84 085325
[16] LaShell S, McDougall B A and Jensen E 1996 Phys. Rev. Lett. 77 3419
[17] Zhang R W, Zhang C W, Ji W X, Li P, Wang P J, Li S S and Yan S S 2016 Appl. Phys. Lett. 109 182109
[18] Ezawa M 2012 New J. Phys. 14 033003
[19] Zhou P, Xue L and Sun L Z 2017 J. Mater. Chem. C 5 4268
[20] Li X, Dai Y, Ma Y, Wei W, Yu L and Huang B 2015 Nano Res. 8 2954
[21] Crisostomo C P, Yao L Z, Huang Z Q, Hsu C H, Chuang F C, Lin H, Albao M A and Bansil A 2015 Nano Lett. 15 6568
[22] Li J, He C Y, Meng L J, Xiao H P, Tang C, Wei X L, Kim J, Kioussis N, Stocks G M and Zhong J X 2015 Sci. Rep. 5 14115
[23] Weng H, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
[24] Si C, Jin K H, Zhou J, Sun Z and Liu F 2016 Nano Lett. 16 6584
[25] Weng H, Ranjbar A, Liang Y, Song Z, Khazaei M, Yunoki S, Arai M, Kawazoe Y, Fang Z and Dai X 2015 Phys. Rev. B 92 075436
[26] Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B and Frauenheim T 2015 Nano Lett. 15 7867
[27] Knez I, Du R R and Sullivan G 2012 Phys. Rev. Lett. 109 186603
[28] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[29] Miao L, Yao M Y, Ming W, Zhu F, Han C Q, Wang Z F, Guan D D, Gao C L, Liu C, Liu F, Qian D and Jia J F 2015 Phys. Rev. B 20 91
[30] Zhao H, Zhang C W, Ji W X, Zhang R W, Li S S, Yan S S, Zhang B M, Li P and Wang P J 2016 Sci. Rep. 6 20152
[31] Chen H, Yan P L, Li J, He C Y, Zhang C X, Tang C and Zhong J X 2020 J. Appl. Phys. 127 084301
[32] Yuhara J, He B, Matsunami N, Nakatake M and Le Lay G 2019 Adv. Mater. 31 1901017
[33] Huang Z Q, Hsu C H, Chuang F C, Liu Y T, Lin H, Su W S, Ozolins V and Bansil A 2014 New J. Phys. 16 105018
[34] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[35] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Blöchl P E 1994 Phys. Rev. B 50 17953
[38] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[39] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[40] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 4063 4066
[41] Zhu L Y, Zhang T T, Chen G B and Chen H B 2018 Phys. Chem. Chem. Phys. 20 30133
[42] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[43] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[44] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[45] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[46] Si C, Liu J W, Xu Y, Wu J, Gu B L and Duan W H 2014 Phys. Rev. B 89 115429
[47] Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Zhang P Z, Duan W H and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[48] Hong L, Ge J, Shuang S and Liu D Q 2022 Acta Phys. Sin. 71 016301 (in Chinese)
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[5] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[6] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[7] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[8] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[9] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[10] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[11] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[14] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[15] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
No Suggested Reading articles found!