CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F |
Wenming Xue(薛文明)1,†, Jin Li(李金)2,‡, Chaoyu He(何朝宇)2, Tao Ouyang(欧阳滔)2, Xiongying Dai(戴雄英)1, and Jianxin Zhong(钟建新)2 |
1 School of Computational Science and Electronics, Hunan Institute of Engineering, Xiangtan 411104, China; 2 School of Physics and Optoelectronics Engineering, Xiangtan University, Xiangtan 411105, China |
|
|
Abstract Rashba spin splitting (RSS) and quantum spin Hall effect (QSHE) have attracted enormous interest due to their great significance in the application of spintronics. In this work, we theoretically proposed a new two-dimensional (2D) material H-Pb-F with coexistence of giant RSS and quantum spin Hall effec by using the ab initio calculations. Our results show that H-Pb-F possesses giant RSS (1.21 eV·Å) and the RSS can be tuned up to 4.16 eV·Å by in-plane biaxial strain, which is a huge value among 2D materials. Furthermore, we also noticed that H-Pb-F is a 2D topological insulator (TI) duo to the strong spin-orbit coupling (SOC) interaction, and the large topological gap is up to 1.35 eV, which is large enough for for the observation of topological edge states at room temperature. The coexistence of giant RSS and quantum spin Hall effect greatly broadens the potential application of H-Pb-F in the field of spintronic devices.
|
Received: 23 September 2022
Revised: 16 November 2022
Accepted manuscript online: 02 December 2022
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.21.-b
|
(Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)
|
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874316, 11404275, and 11474244), the National Basic Research Program of China (Grant No. 2015CB921103), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2016JJ3118 and 2020JJ4244), the Scientific Research Foundation of the Education Bureau of Hunan Province, China (Grant Nos. 16K084, 17K086, and 21A049), and the Fund for the Innovative Research Team in University (Grant No. IRT13093). |
Corresponding Authors:
Wenming Xue, Jin Li
E-mail: xuewm@hnie.edu.cn;lijin@xtu.edu.cn
|
Cite this article:
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新) Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F 2023 Chin. Phys. B 32 037101
|
[1] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323 [2] Bychkov Y A and Rashba E I 1984 J. Exp. Theor. Phys. Lett. 39 78 [3] Dresselhaus G 1955 Phys. Rev. 100 580 [4] Lu J P, Yau J B, Shukla S P and Shayegan M 1999 Phys. Rev. Lett. 81 1282 [5] Kuhlen S, Schmalbuch K, Hagedorn M, Schlammes P, Patt M, Lepsa M, Guntherodt G and Beschoten B 2012 Phys. Rev. Lett. 109 146603 [6] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150 [7] Qi X L, Wu Y S and Zhang S C 2006 Phys. Rev. B 74 085308 [8] Rezavand A and Ghobadi N 2021 Physica E 132 114768 [9] Peng Q, Lei Y, Deng X, Deng J, Wu G, Li J, He C Y and Zhong J X 2022 Physica E 135 114944 [10] Xue W M, Li J, Peng X Y, He C Y, Ouyang T, Zhang C X, Tang C, Li Z Q, Liu H T and Zhong J X 2019 J. Phys.: Condens. Matter 31 365002 [11] Lee K, Yun W S and Lee J D 2015 Phys. Rev. B 91 125420 [12] Xue W M, Li J, Peng X Y, He C Y, Ouyang T, Zhang C X, Tang C, Li Z Q, Lu D L and Zhong J X 2020 J. Phys. D: Appl. Phys. 53 025302 [13] Yang H, Peng X Y, Wei X L, Liu W L, Zhu W, Xiao D, Stocks G M and Zhong J X 2012 Phys. Rev. B 86 155317 [14] Varykhalov A, Sanchez-Barriga J, Shikin A M, Gudat W, Eberhardt W and Rader O 2008 Phys. Rev. Lett. 101 256601 [15] Huang S M, Badrutdinov A O, Serra L, Kodera T, Nakaoka T, Kumagai N, Arakawa Y, Tayurskii D A, Kono K and Ono K 2011 Phys. Rev. B 84 085325 [16] LaShell S, McDougall B A and Jensen E 1996 Phys. Rev. Lett. 77 3419 [17] Zhang R W, Zhang C W, Ji W X, Li P, Wang P J, Li S S and Yan S S 2016 Appl. Phys. Lett. 109 182109 [18] Ezawa M 2012 New J. Phys. 14 033003 [19] Zhou P, Xue L and Sun L Z 2017 J. Mater. Chem. C 5 4268 [20] Li X, Dai Y, Ma Y, Wei W, Yu L and Huang B 2015 Nano Res. 8 2954 [21] Crisostomo C P, Yao L Z, Huang Z Q, Hsu C H, Chuang F C, Lin H, Albao M A and Bansil A 2015 Nano Lett. 15 6568 [22] Li J, He C Y, Meng L J, Xiao H P, Tang C, Wei X L, Kim J, Kioussis N, Stocks G M and Zhong J X 2015 Sci. Rep. 5 14115 [23] Weng H, Dai X and Fang Z 2014 Phys. Rev. X 4 011002 [24] Si C, Jin K H, Zhou J, Sun Z and Liu F 2016 Nano Lett. 16 6584 [25] Weng H, Ranjbar A, Liang Y, Song Z, Khazaei M, Yunoki S, Arai M, Kawazoe Y, Fang Z and Dai X 2015 Phys. Rev. B 92 075436 [26] Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B and Frauenheim T 2015 Nano Lett. 15 7867 [27] Knez I, Du R R and Sullivan G 2012 Phys. Rev. Lett. 109 186603 [28] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 [29] Miao L, Yao M Y, Ming W, Zhu F, Han C Q, Wang Z F, Guan D D, Gao C L, Liu C, Liu F, Qian D and Jia J F 2015 Phys. Rev. B 20 91 [30] Zhao H, Zhang C W, Ji W X, Zhang R W, Li S S, Yan S S, Zhang B M, Li P and Wang P J 2016 Sci. Rep. 6 20152 [31] Chen H, Yan P L, Li J, He C Y, Zhang C X, Tang C and Zhong J X 2020 J. Appl. Phys. 127 084301 [32] Yuhara J, He B, Matsunami N, Nakatake M and Le Lay G 2019 Adv. Mater. 31 1901017 [33] Huang Z Q, Hsu C H, Chuang F C, Liu Y T, Lin H, Su W S, Ozolins V and Bansil A 2014 New J. Phys. 16 105018 [34] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [35] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [37] Blöchl P E 1994 Phys. Rev. B 50 17953 [38] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [39] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 [40] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 4063 4066 [41] Zhu L Y, Zhang T T, Chen G B and Chen H B 2018 Phys. Chem. Chem. Phys. 20 30133 [42] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [43] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803 [44] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 [45] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438 [46] Si C, Liu J W, Xu Y, Wu J, Gu B L and Duan W H 2014 Phys. Rev. B 89 115429 [47] Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Zhang P Z, Duan W H and Zhang S C 2013 Phys. Rev. Lett. 111 136804 [48] Hong L, Ge J, Shuang S and Liu D Q 2022 Acta Phys. Sin. 71 016301 (in Chinese) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|