Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037102    DOI: 10.1088/1674-1056/ac891c

Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation

Nan Gao(高楠)1, Guodong Zhu(朱国栋)1, Yingzhou Huang(黄映洲)2, and Yurui Fang(方蔚瑞)1,†
1 Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams(Ministry of Education), and School of Physics, Dalian University of Technology, Dalian 116024, China;
2 State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
Abstract  Relationship of plasmonic properties of multiple clusters to molecular interactions and properties of a single cluster or molecule have become increasingly important due to the continuous emergence of molecular and cluster devices or systems. A hybrid phenomenon similar to plasmonic nanoparticle hybridization exists between two molecules with plasmon excitation modes. We use linear-response time-dependent density functional theory, real-time propagation time-dependent density functional theory, the plasmonicity index, and transition contribution maps (TCMs) to identify the plasmon excitation modes for the linear polyenes octatetraene with -OH and -NH2 groups and analyze the hybridization characteristics using charge transitions. The results show that molecular plasmon hybridization exists when the two molecules are coupled. The TCM analysis shows that the plasmon modes and hybridization result from collective and single-particle excitation. The plasmon mode is stronger, and the individual properties of the molecules are maintained after coupling when there is extra charge depose in the molecules because the electrons are moving in the molecules. This study provides new insights into the molecular plasmon hybridization of coupled molecules.
Keywords:  plasmon hybridization      molecular plasmon      time-dependent density functional theory (TDDFT)  
Received:  29 June 2022      Revised:  22 July 2022      Accepted manuscript online:  12 August 2022
PACS:  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)) (Electronic structure and bonding characteristics)  
  31.15.A- (Ab initio calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274054 and 12074054), and the Fundamental Research Funds for the Central Universities (Grant No. DUT21LK06).
Corresponding Authors:  Yurui Fang     E-mail:

Cite this article: 

Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞) Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation 2023 Chin. Phys. B 32 037102

[1] Novotny L and Hecht B 2012 Principles of Nano-Optics (Cambridge: Cambridge University Press)
[2] Kazuma E, Jung J, Ueba H, Trenary M and Kim Y 2018 Science 360 521
[3] Chu W, Saidi W A and Prezhdo O V 2020 ACS Nano 14 10608
[4] Zhang X, Li X, Reish M E, Zhang D, Su N Q, Gutierrez Y, Moreno F, Yang W, Everitt H O and Liu J 2018 Nano Lett. 18 1714
[5] Li X, Xiao D and Zhang Z 2013 New J. Phys. 15 023011
[6] Tame M S, McEnery K, Özdemir Ş, Lee J, Maier S A and Kim M 2013 Nat. Phys. 9 329
[7] Rossi T P, Shegai T, Erhart P and Antosiewicz T J 2019 Nat. Commun. 10 3336
[8] Rossi T P, Kuisma M, Puska M J, Nieminen R M and Erhart P 2017 J. Chem. Theory Comput. 13 4779
[9] Schira R and Rabilloud F 2019 J. Phys. Chem. C 123 6205
[10] Conley K M, Nayyar N, Rossi T P, Kuisma M, Turkowski V, Puska M J and Rahman T S 2019 ACS Nano 13 5344
[11] Della Sala F, Pezzolla M, D'Agostino S and Fabiano E 2019 ACS Photon. 6 1474
[12] Yan J, Yuan Z and Gao S 2007 Phys. Rev. Lett. 98 216602
[13] Bernadotte S, Evers F and Jacob C R 2013 J. Phys. Chem. C 117 1863
[14] Bursi L, Calzolari A, Corni S and Molinari E 2016 ACS Photon. 3 520
[15] Krauter C M, Schirmer J, Jacob C R, Pernpointner M and Dreuw A 2014 J. Chem. Phys. 141 104101
[16] Krauter C M, Bernadotte S, Jacob C R, Pernpointner M and Dreuw A 2015 J. Phys. Chem. C 119 24564
[17] Zhang K, Wang H and Fang M 2019 Chem. Phys. Lett. 721 38
[18] Lauchner A, Schlather A E, Manjavacas A, Cui Y, McClain M J, Stec G J, Garcia de Abajo F J, Nordlander P and Halas N J 2015 Nano Lett. 15 6208
[19] Stec G J, Lauchner A, Cui Y, Nordlander P and Halas N J 2017 ACS Nano 11 3254
[20] Zhang R, Bursi L, Cox J D, Cui Y, Krauter C M, Alabastri A, Manjavacas A, Calzolari A, Corni S, Molinari E, Carter E A, Garcia de Abajo F J, Zhang H and Nordlander P 2017 ACS Nano 11 7321
[21] Manjavacas A, Marchesin F, Thongrattanasiri S, Koval P, Nordlander P, Sanchez-Portal D and García de Abajo F J 2013 ACS Nano 7 3635
[22] Zeng S, Baillargeat D, Ho H P and Yong K T 2014 Chem. Soc. Rev. 43 3426
[23] Zhang R, Zhang Y, Dong Z, Jiang S, Zhang C, Chen L, Zhang L, Liao Y, Aizpurua J and Luo Y E 2013 Nature 498 82
[24] Moskovits M 2005 J. Raman Spectrosc. 36 485
[25] Neubrech F, Huck C, Weber K, Pucci A and Giessen H 2017 Chem. Rev. 117 5110
[26] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442
[27] Oulton R F, Sorger V J, Genov D, Pile D and Zhang X 2008 Nat. Photon. 2 496
[28] Cushing S K, Li J, Meng F, Senty T R, Suri S, Zhi M, Li M, Bristow A D and Wu N 2012 J. Am. Chem. Soc. 134 15033
[29] Linic S, Christopher P and Ingram D B 2011 Nat. Mater. 10 911
[30] Fang Y and Sun M 2015 Light Sci. Appl. 4 e294
[31] Memmi H, Benson O, Sadofev S and Kalusniak S 2017 Phys. Rev. Lett. 118 126802
[32] Dintinger J, Klein S, Bustos F, Barnes W L and Ebbesen T W 2005 Phys. Rev. B 71 035424
[33] Cui Y, Lauchner A, Manjavacas A, Abajo F J G D, Halas N J and Nordlander P 2016 Nano Lett. 16 6390
[34] Prodan E and Nordlander P 2004 J. Chem. Phys. 120 5444
[35] Gil-Guerrero S, Peña-Gallego Á and Mandado M 2019 J. Phys. Chem. C 124 1585
[36] Frisch M, Trucks G, Schlegel H, et al. 2016 Gaussian 16 (Gaussian, Inc. Wallingford, CT)
[37] Becke A D 1988 Phys. Rev. A 38 3098
[38] Parr R G 1980 Horizons of Quantum Chemistry (Berlin: Springer) pp. 5-15
[39] Yanai T, Tew D P and Handy N C 2004 Chem. Phys. Lett. 393 51
[40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[41] Yabana K and Bertsch G 1996 Phys. Rev. B 54 4484
[42] Blöchl P E 1994 Phys. Rev. B 50 17953
[43] Rossi T P, Lehtola S, Sakko A, Puska M J and Nieminen R M 2015 J. Chem. Phys. 142 094114
[44] Mortensen J J, Hansen L B and Jacobsen K W 2005 Phys. Rev. B 71 035109
[45] Enkovaara J, Rostgaard C, Mortensen J J, et al. 2010 J. Phys.: Condens. Matter 22 253202
[46] Larsen A H, Vanin M, Mortensen J J, Thygesen K S and Jacobsen K W 2009 Phys. Rev. B 80 195112
[47] Kuisma M, Sakko A, Rossi T P, Larsen A H, Enkovaara J, Lehtovaara L and Rantala T T 2015 Phys. Rev. B 91 115431
[48] Larsen A H, Mortensen J J, Blomqvist J, Castelli I E, Christensen R, Dulak M, Friis J, Groves M N, Hammer B and Hargus C 2017 J. Phys.: Condens. Matter 29 273002
[49] Harris C R, Millman K J, Van Der Walt S J, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S and Smith N J 2020 Nature 585 357
[50] Virtanen P, Gommers R, Oliphant T E, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W and Bright J 2020 Nat. Methods 17 261
[51] Hunter J D 2007 Comput. Sci. Eng. 9 90
[52] Malola S, Lehtovaara L, Enkovaara J and Hakkinen H 2013 Acs Nano 7 10263
[53] Kuisma M, Rousseaux B, Czajkowski K M, Rossi T P, Shegai T, Erhart P and Antosiewicz T J 2022 ACS Photon. 9 1065
[54] Zhang H, Ming S, Liang Y, Feng L, Talin A and Xu T 2019 ACS Appl. Mater. Inter. 11 20581
[1] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[2] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[3] Characteristics and mechanism analysis of Fano resonances in Π-shaped gold nano-trimer
Han-Hua Zhong(钟汉华), Jian-Hong Zhou(周见红), Chen-Jie Gu(顾辰杰), Mian Wang(王勉), Yun-Tuan Fang(方云团), Tian Xu(许田), Jun Zhou(周骏). Chin. Phys. B, 2017, 26(12): 127301.
[4] Fano-like resonance characteristics of asymmetric Fe2O3@Au core/shell nanorice dimer
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Zhang Hao-Peng (张昊鹏), Chen Jin-Ping (陈金平). Chin. Phys. B, 2014, 23(8): 087303.
No Suggested Reading articles found!