Abstract High-fidelity quantum logic gates are essential in quantum computation, and both photons and electron spins in quantum dots (QDs) have their own unique advantages in implementing quantum computation. It is of critical significance to achieve high-fidelity quantum gates for photon-QD hybrid systems. Here, we propose two schemes for implementing high-fidelity universal quantum gates including Toffoli gate and Fredkin gate for photon-QD hybrid systems, utilizing the practical scattering of a single photon off a QD-cavity system. The computation errors from the imperfections involved in the practical scattering are detected and prevented from arising in the final results of the two gates. Accordingly, the unity fidelity of each quantum gate is obtained in the nearly realistic condition, and the requirement for experimental realization is relaxed. Furthermore, the quantum circuits for the two gates are compact and no auxiliary qubits are required, which would also be the advantages regarding their experimental feasibility. These features indicate that our schemes may be useful in the practical quantum computation tasks.
(Quantum error correction and other methods for protection against decoherence)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12004029).
Corresponding Authors:
Guan-Yu Wang
E-mail: wangguanyu@buct.edu.cn
Cite this article:
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉) High-fidelity universal quantum gates for hybrid systems via the practical photon scattering 2023 Chin. Phys. B 32 030303
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [2] Shor P W 1997 SIAM J. Comput.26 1484 [3] Grover L K 1997 Phys. Rev. Lett.79 325 [4] Long G L 2001 Phys. Rev. A64 022307 [5] Reiserer A, Kalb N, Rempe G and Ritter S 2014 Nature508 237 [6] Tiecke T G, Thompson J D, de Leon N P, Liu L R, Vuletic V and Lukin M D 2014 Nature508 241 [7] Shi Y Y 2003 Quantum Inf. Comput.3 84 [8] Fredkin E and Toffoli T 1982 Int. J. Theor. Phys.21 219 [9] Cory D G, Price M D, Maas W, Knill E, Laflamme R, Zurek W H, Havel T F and Somaroo S S 1998 Phys. Rev. Lett.81 2152 [10] Dennis E 2001 Phys. Rev. A63 052314 [11] Knill E, Laflamme R and Milburn G J 2001 Nature409 46 [12] Duan L M and Kimble H J 2004 Phys. Rev. Lett.92 127902 [13] Nielsen M A 2004 Phys. Rev. Lett.93 040503 [14] Gong Y X, Guo G C and Ralph T C 2008 Phys. Rev. A78 012305 [15] O'Brien J L, Pryde G J, White A G, Ralph T C and Branning D 2003 Nature426 264 [16] Gasparoni S, Pan J W, Walther P, Rudolph T and Zeilinger A 2004 Phys. Rev. Lett.93 020504 [17] Nemoto K and Munro W J 2004 Phys. Rev. Lett.93 250502 [18] Li X Q, Wu Y W, Steel D, Gammon D, Stievater T H, Katzer D S, Park D, Piermarocchi C and Sham L J 2003 Science301 809 [19] Wei H R and Deng F G 2013 Opt. Express21 17671 [20] Wang C, Zhang Y, Jiao R Z and Jin G S 2013 Opt. Express21 19252 [21] Kang Y H, Xia Y and Lu P M 2016 Quantum Inf. Process.15 4521 [22] Ren B C, Wei H R and Deng F G 2013 Laser Phys. Lett.10 095202 [23] Wei H R, Liu W Q and Chen N Y 2020 Ann. Phys. (Berlin)532 1900578 [24] Long G L and Xiao L 2003 J. Chem. Phys.119 8473 [25] Jones J A, Mosca M and Hansen R H 1998 Nature393 344 [26] Feng G R, Xu G F and Long G L 2013 Phys. Rev. Lett.110 190501 [27] Xin T, Hao L, Hou S Y, Feng G R and Long G L 2019 Sci. China Phys. Mech. Astron.62 960312 [28] Yamamoto T, Pashkin Y A, Astafiev O, Nakamura Y and Tsai J S 2003 Nature425 941 [29] DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M and Schoelkopf R J 2009 Nature460 240 [30] Neeley M, Bialczak R C, Lenander M, Lucero E, Mariantoni M, O'Connell A, Sank D, Wang H, Weides M, Wenner J, Yin Y, Yamamoto T, Cleland A N and Martins J M 2010 Nature467 570 [31] Romero G, Ballester D, Wang Y M, Scarani V and Solano E 2012 Phys. Rev. Lett.108 120501 [32] Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O'Malley P, Roushan P, Vainsencher A, Wenner J and Korotkov A N 2014 Nature508 500 [33] Andersen C K and Molmer K 2015 Phys. Rev. A91 023828 [34] Loss D and DiVincenzo D P 1998 Phys. Rev. A57 120 [35] Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett.83 4204 [36] Hu C Y, Munro W J and Rarity J G 2008 Phys. Rev. B78 125318 [37] Hu C Y, Munro W J, O'Brien J L and Rarity J G 2009 Phys. Rev. B80 205326 [38] Wei H R and Deng F G 2014 Opt. Express22 593 [39] van der Sar T, Wang Z H, Blok M S, Bernien H, Taminiau T H, Toyli D M, Lidar D A, Awschalom D D, Hanson R and Dobrovitski V V 2012 Nature484 82 [40] Wei H R and Deng F G 2013 Phys. Rev. A88 042323 [41] Cao C, Duan Y W, Chen X, Zhang R, Wang T J and Wang C 2017 Opt. Express25 16931 [42] Jaksch D, Briegel H J, Cirac J I, Gardiner C W and Zoller P 1999 Phys. Rev. Lett.82 1975 [43] Jaksch D, Cirac J I, Zoller P, Rolston S L, Cté R and Lukin M D 2000 Phys. Rev. Lett.85 2208 [44] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G and Saffman M 2010 Phys. Rev. Lett.104 010503 [45] Sorensen A S and Molmer K 2003 Phys. Rev. Lett.91 097905 [46] Wang H F, Zhu A D and Zhang S 2014 Opt. Lett.39 1489 [47] Song J, Xia Y and Song H S 2009 Europhys. Lett.87 50005 [48] Xiao Y F, Lin X M, Gao J, Yang Y, Han Z F and Guo G C 2004 Phys. Rev. A70 042314 [49] Bonato C, Haupt F, Oemrawsingh S S R, Gudat J, Ding D, vanExter M P and Bouwmeester D 2010 Phys. Rev. Lett.104 160503 [50] Liang L M and Li C Z 2005 Phys. Rev. A72 024303 [51] Wei H R and Deng F G 2013 Phys. Rev. A87 022305 [52] Wang T J, Zhang Y and Wang C 2014 Laser Phys. Lett.11 025203 [53] Bechler O, Borne A, Rosenblum S, Guendelman G, Mor O E, Netser M, Ohana T, Aqua Z, Drucker N, Finkelstein R, Lovsky Y, Bruch R, Gurovich D, Shafir E and Dayan B 2018 Nat. Phys.14 996 [54] Song G Z, Guo J L, Liu Q, Wei H R and Long G L 2021 Phys. Rev. A104 012608 [55] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science309 2180 [56] Greilich A, Yakovlev D R, Shabaev A, Efros A L, Yugova I A, Oulton R, Stavarache V, Reuter D, Wieck A and Bayer M 2006 Science313 341 [57] Elzerman J M, Hanson R, Willems van Beveren L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature430 431 [58] Kroutvar M, Ducommun Y, Heiss D, Bichler M, Schuh D, Abstreiter G and Finley J J 2004 Nature432 81 [59] Atatüre M, Dreiser J, Badolato A, Högele A, Karrai K and Imamoglu A 2006 Science312 551 [60] Atatüre M, Dreiser J, Badolato A and Imamoglu A 2007 Nat. Phys.3 101 [61] Berezovsky J, Mikkelsen M H, Stoltz N G, Coldren L A and Awschalom D D 2008 Science320 349 [62] Press D, Ladd T D, Zhang B Y and Yamamoto Y 2008 Nature456 218 [63] Gupta J A, Knobel R, Samarth N and Awschalom D D 2001 Science292 2458 [64] Chen P C, Piermarocchi C, Sham L J, Gammon D and Steel D G 2004 Phys. Rev. B69 075320 [65] Hanson R, Willems van Beveren L H, Vink I T, Elzerman J M, Naber W J M, Koppens F H L, Kouwenhoven L P and Vandersypen L M K 2005 Phys. Rev. Lett.94 196802 [66] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature432 200 [67] Chen H J 2018 Photonics Res.6 1171 [68] Arnold C, Demory J, Loo V, Lemaitre A, Sagnes I, Glazov M, Krebs O, Voisin P, Senellart P and Lanco L 2015 Nat. Commun.6 6236 [69] Androvitsaneas P, Young A B, Schneider C, Maier S, Kamp M, Höfling, Knauer S, Harbord E, Hu C Y, Rarity J G and Oulton R 2016 Phys. Rev. B93 241409(R) [70] Hu C Y and Rarity J G 2011 Phys. Rev. B83 115303 [71] Bennett A J, Lee J P, Ellis D J P, Farrer I, Ritchie D A and Shields A J 2016 Nat. Nanotechnol.11 857 [72] Sun S, Kim H, Solomon G S and Waks E 2016 Nat. Nanotechnol.11 539 [73] Li Y, Aolita L, Chang D E and Kwek L C 2012 Phys. Rev. Lett.109 160504 [74] Cao C, Chen X, Duan Y W, Fan L, Zhang R, Wang T J and Wang C 2016 Sci. China Phys. Mech. Astron.59 100315 [75] Liu Y T, Wu Y M and Du FF 2022 Chin. Phys. B31 050303 [76] Borregaard J, Kómár P, Kessler E M, Sorensen A S and Lukin M D 2015 Phys. Rev. Lett.114 110502 [77] Li T and Deng F G 2016 Phys. Rev. A94 062310 [78] Li T and Long G L 2016 Phys. Rev. A94 022343 [79] Qin W, Wang X, Miranowicz A, Zhong Z and Nori F 2017 Phys. Rev. A96 012315 [80] Ren B C and Deng F G 2017 Opt. Express25 10863 [81] Shapira Y, Shaniv R, Manovitz T, Akerman N and Ozeri R 2018 Phys. Rev. Lett.121 180502 [82] Wang G Y, Li T, Ai Q and Deng F G 2018 Opt. Express26 23333 [83] Li M and Zhang M 2018 Opt. Express26 33129 [84] Li M, Lin J Y and Zhang M 2019 Ann. Phys. (Berlin)531 1800312 [85] Wei H R, Zheng Y B, Hua M and Xu G F 2020 Appl. Phys. Express13 082007 [86] Xu Y, Chu J, Yuan J H, Qiu J W, Zhou Y X, Zhang L B, Tan X S, Yu Y, Liu S, Li J, Yan F and Yu D P 2020 Phys. Rev. Lett.125 240503 [87] Han Y H, Cao C, Fan L and Zhang R 2021 Opt. Express29 20045 [88] Cao C, Han Y H, Zhang L, Fan L, Duan Y W and Zhang R 2019 Adv. Quantum Technol.2 1900081 [89] Cao C, Zhang L, Han Y H, Yin P P, Fan L, Duan Y W and Zhang R 2020 Opt. Express28 2857 [90] Fan L and Cao C 2021 J. Opt. Soc. Am. B38 1593 [91] Du F F, Liu Y T, Shi Z R, Liang Y X, Tang J and Liu J 2019 Opt. Express27 27046 [92] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) [93] An J H, Feng M and Oh C H 2009 Phys. Rev. A79 032303 [94] Wang G Y, Ai Q, Deng F G and Ren B C 2020 Opt. Express28 18693 [95] Reck M and Zeilinger A 1994 Phys. Rev. Lett.73 58 [96] Ren B C, Du F F and Deng F G 2013 Phys. Rev. A88 012302 [97] Reitzenstein S, Hofmann C, Gorbunovb A, Strauß M, Kwon S H, Schneider C, Löffler A, Höfling S, Kamp M and Forchel A 2007 Appl. Phys. Lett.90 251109 [98] Hu C, Young A, O'Brien J, Munro W and Rarity J 2008 Phys. Rev. B78 085307 [99] Borri P, Langbein W, Schneider S, Woggon U, Sellin R L, Ouyang D and Bimberg D 2001 Phys. Rev. Lett.87 157401 [100] Birkedal D, Leosson K and Hvam J M 2001 Phys. Rev. Lett.87 227401 [101] Langbein W, Borri P, Woggon U, Stavarache V, Reuter D and Wieck A D 2004 Phys. Rev. B70 033301 [102] Heiss D, Schaeck S, Huebl H, Bichler M, Abstreiter G, Finley J J, Bulaev D V and Loss D 2007 Phys. Rev. B76 241306 [103] Gerardot B D, Brunner D, Dalgarno P A, Öhberg P, Seidl S, Kroner M, Karrai K, Stoltz N G, Petroff P M and Warburton R J 2008 Nature451 441 [104] Brunner D, Gerardot B D, Dalgarno P A, Wüst G, Karrai K, Stoltz N G, Petroff P M and Warburton R J 2009 Science325 70 [105] Bester G, Nair S and Zunger A 2003 Phys. Rev. B67 161306 [106] Clark S M, Fu K M C, Zhang Q, Ladd T D, Stanley C and Yamamoto Y 2009 Phys. Rev. Lett.102 247601 [107] Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett.82 2417 [108] Hall M, Altepeter J and Kumar P 2011 Phys. Rev. Lett.106 053901 [109] Hall M, Altepeter J and Kumar P 2011 New J. Phys.13 105004 [110] Rambo T M, Altepeter J B and Kumar P 2016 Phys. Rev. A93 052321 [111] Zhou X J, Liu W Q, Zheng Y B, Wei H R and Du F F 2022 Ann. Phys. (Berlin)534 2100509
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.