Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 030304    DOI: 10.1088/1674-1056/aca399
GENERAL Prev   Next  

Unified entropy entanglement with tighter constraints on multipartite systems

Qi Sun(孙琪)1, Tao Li(李陶)1,†, Zhi-Xiang Jin(靳志祥)2,‡, and Deng-Feng Liang(梁登峰)1
1 School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China;
2 School of Computer Science and Techonology, Dongguan University of Technology, Dongguan 523808, China
Abstract  Monogamy and polygamy relations characterize the distributions of entanglement in multipartite systems. We provide a characterization of multiqubit entanglement constraints in terms of unified-$(q,s)$ entropy. A class of tighter monogamy inequalities of multiqubit entanglement based on the $\alpha$-th power of unified-$(q,s)$ entanglement for $\alpha\geq 1$ and a class of polygamy inequalities in terms of the $\beta$-th power of unified-$(q,s)$ entanglement of assistance are established in this paper. Our results present a general class of the monogamy and polygamy relations for bipartite entanglement measures based on unified-$(q,s)$ entropy, which are tighter than the existing ones. What is more, some usual monogamy and polygamy relations, such as monogamy and polygamy relations based on entanglement of formation, Renyi-$q$ entanglement of assistance and Tsallis-$q$ entanglement of assistance, can be obtained from these results by choosing appropriate parameters $(q,s)$ in unified-$(q,s)$ entropy entanglement. Typical examples are also presented for illustration.
Keywords:  entanglement      monogamy relations      polygamy relations  
Received:  22 September 2022      Revised:  15 November 2022      Accepted manuscript online:  17 November 2022
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175147, 11847209, and 11675113), the Natural Science Foundation of Beijing (Grant No. KZ201810028042), and Beijing Natural Science Foundation (Grant No. Z190005).
Corresponding Authors:  Tao Li, Zhi-Xiang Jin     E-mail:  litao@btbu.edu.cn;jzxjinzhixiang@126.com

Cite this article: 

Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰) Unified entropy entanglement with tighter constraints on multipartite systems 2023 Chin. Phys. B 32 030304

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Mintert F, Kuś M and Buchleitner A 2004 Phys. Rev. Lett. 92 167902
[4] Chen K, Albeverio S and Fei S M 2005 Phys. Rev. Lett. 95 040504
[5] Breuer H P 2006 J. Phys. A: Math. Gen. 39 11847
[6] Breuer H P 2006 Phys. Rev. Lett. 97 080501
[7] de Vicente J I 2007 Phys. Rev. A 75 052320
[8] Zhang C J, Zhang Y S, Zhang S and Guo G C 2007 Phys. Rev. A 76 012334
[9] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[10] Osborne T J and Verstraete F 2006 Phys. Rev. Lett. 96 220503
[11] Pawlowski M 2010 Phys. Rev. A 82 032313
[12] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[13] Gour G, Meyer D A and Sanders B C 2005 Phys. Rev. A 72 042329
[14] Goura G, Bandyopadhyayb S and Sandersc B C 2007 J. Math. Phys. 48 012108
[15] Kim J S 2010 Phys. Rev. A 81 062328
[16] Kim J S and Sanders B C 2011 J. Phys. A: Math. Theor. 44 295303
[17] Zhu X N and Fei S M 2014 Phys. Rev. A 90 024304
[18] Jin Z X and Fei S M 2017 Quantum Inf. Process. 16 77
[19] Kim J S 2018 Phys. Rev. A 97 012334
[20] Jin Z X, Li J, Li T and Fei S M 2018 Phys. Rev. A 97 032336
[21] Jin Z X and Fei S M 2019 Phys. Rev. A 99 032343
[22] Guo M L, Li B, Wang Z X and Fei S M 2020 Chin. Phys. B 29 070304
[23] Kim J S 2018 Sci. Rep. 8 12245
[24] Jin Z X and Qiao C F 2020 Chin. Phys. B 29 020305
[25] Hu X and Ye Z 2006 J. Math. Phys. 47 023502
[26] Rastegin A E 2011 J. Stat. Phys. 143 1120
[27] Kim J S 2012 Phys. Rev. A 85 032335
[28] Rastegin A E 2012 J. Phys. A: Math. Theor. 45 045302
[29] Rastegin A E 2013 J. Phys. A: Math. Theor. 46 285301
[30] Liu Z W, Lloyd S and Zhu E 2018 J. High Energ. Phys. 2018 41
[31] Luo Y, Zhang F G and Li Y 2017 Sci. Rep. 7 1122
[32] Horodecki R, Horodecki P and Horodecki M 1996 Phys. Lett. A 210 377
[33] Kim J S and Sanders B C 2010 J. Phys. A: Math. Theor. 43 445305
[34] Tsallis C 1998 J. Stat. Phys. 52 479
[1] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[2] New light fields based on integration theory within the Weylordering product of operators
Ke Zhang(张科), Lan-Lan Li(李兰兰), Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2023, 32(4): 040301.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[9] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[10] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[11] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[12] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[13] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[14] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!