|
|
Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms |
Keyu Guo(郭珂雨)1, Min Li(黎敏)1,†, Jintai Liang(梁锦台)1, Chuanpeng Cao(曹传鹏)1, Yueming Zhou(周月明)1, and Peixiang Lu((陆培祥)1,2 |
1 School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; 2 Optics Valley Laboratory, Wuhan 430074, China |
|
|
Abstract We theoretically study the photoelectron momentum distributions from multiphoton ionization of a model lithium atom over a range of laser wavelengths from 500 nm to 700 nm by numerically solving the time-dependent Schrödinger equation. The photoelectron momentum distributions display many ring-like patterns for the three-photon ionization, which vary dramatically with the change of the laser wavelength. We show that the wavelength-dependent photoelectron energy spectrum can be used to effectively identify the resonant and nonresonant ionization pathways. We also find an abnormal ellipticity dependence of the electron yield for the (2+1) resonance-enhanced ionization via the 4d intermediate state, which is relevant to the two-photon excitation probability from the ground state to the 4d state.
|
Received: 09 September 2022
Revised: 07 October 2022
Accepted manuscript online: 19 October 2022
|
PACS:
|
32.80.-t
|
(Photoionization and excitation)
|
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
Fund: Project supported by National Key Research and Development Program of China (Grant No. 2019YFA0308300) and the National Natural Science Foundation of China (Grant Nos. 12021004 and 61475055). |
Corresponding Authors:
Min Li
E-mail: mli@hust.edu.cn
|
Cite this article:
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥) Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms 2023 Chin. Phys. B 32 023201
|
[1] Rhodes C K 1985 Science 229 1345 [2] Mevel E, Breger P, Trainham R, Petite G, Agostini P, Migus A, Chambaret J P and Antonetti A 1993 Phys. Rev. Lett. 70 406 [3] Zhang L, Miao Z, Zheng W, Zhong X and Wu C 2019 Chem. Phys. 523 52 [4] Benda J and Mašín Z 2021 Sci. Rep. 11 11686 [5] Potvliege R M, Meṣe E and Vučić S 2010 Phys. Rev. A 81 053402 [6] Tumakov D A, Telnov D A, Plunien G and Shabaev V M 2019 Phys. Rev. A 100 023407 [7] Ilchen M, Douguet N, Mazza T, Rafipoor A J, Callegari C, Finetti P, Plekan O, Prince K C, Demidovich A, Grazioli C, Avaldi L, Bolognesi P, Coreno M, Di Fraia M, Devetta M, Ovcharenko Y, Düsterer S, Ueda K, Bartschat K, Grum-Grzhimailo A N, Bozhevolnov A V, Kazansky A K, Kabachnik N M and Meyer M 2017 Phys. Rev. Lett. 118 013002 [8] De Silva A H, Atri-Schuller D, Dubey S, Acharya B P, Romans K L, Foster K, Russ O, Compton K, Rischbieter C, Douguet N, Bartschat K and Fischer D 2021 Phys. Rev. Lett. 126 023201 [9] De Silva A H, Moon T, Romans K L, Acharya B P, Dubey S, Foster K, Russ O, Rischbieter C, Douguet N, Bartschat K and Fischer D 2021 Phys. Rev. A 103 053125 [10] Buschlinger R, Nolte S and Peschel U 2014 Phys. Rev. B 89 184306 [11] Sharma A, Slipchenko M N, Shneider M N, Wang X, Rahman K A and Shashurin A 2018 Sci. Rep. 8 2874 [12] Ryszka M, Pandey R, Rizk C, Tabet J, Barc B, Dampc M, Mason N J and Eden S 2016 Int. J. Mass Spectrom. 396 48 [13] Sharma A, Braun E L, Patel A R, Arafat Rahman K, Slipchenko M N, Shneider M N and Shashurin A 2020 J. Appl. Phys. 128 141301 [14] Berrah N, Sanchez-Gonzalez A, Jurek Z, Obaid R, Xiong H, Squibb R J, Osipov T, Lutman A, Fang L, Barillot T, Bozek J D, Cryan J, Wolf T J, Rolles D, Coffee R, Schnorr K, Augustin S, Fukuzawa H, Motomura K, Niebuhr N, Frasinski L J, Feifel R, Schulz C P, Toyota K, Son S K, Ueda K, Pfeifer T, Marangos J P and Santra R 2019 Nat. Phys. 15 1279 [15] Garcia Ruiz R F, Vernon A R, Binnersley C L, Sahoo B K, Bissell M, Billowes J, Cocolios T E, Gins W, De Groote R P, Flanagan K T, Koszorus A, Lynch K M, Neyens G, Ricketts C M, Wendt K D, Wilkins S G and Yang X F 2018 Phys. Rev. X 8 041005 [16] Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003 [17] Champenois E G, Shivaram N H, Wright T W, Yang C S, Belkacem A and Cryan J P 2016 J. Chem. Phys. 144 014303 [18] Freeman R R, Bucksbaum P H, Milchberg H, Darack S, Schumacher D and Geusic M E 1987 Phys. Rev. Lett. 59 1092 [19] Ho P J, Bostedt C, Schorb S and Young L 2014 Phys. Rev. Lett. 113 253001 [20] Su J, Ni H, Jaroń-Becker A and Becker A 2014 Phys. Rev. Lett. 113 263002 [21] Ke Q H, Zhou Y M, Liao Y J, Liang J T, Zhao Y, Tan J, Li M and Lu P X 2021 Front. Phys. 16 52503 [22] Pradhan A K, Chen G X, Nahar S N and Zhang H L 2001 Phys. Rev. Lett. 87 183201 [23] Li M, Zhang P, Luo S, Zhou Y, Zhang Q, Lan P and Lu P 2015 Phys. Rev. A 92 063404 [24] Shao Y, Li M, Liu M M, Sun X, Xie X, Wang P, Deng Y, Wu C, Gong Q and Liu Y 2015 Phys. Rev. A 92 013415 [25] Song L L, Sun Y N, Wang Y H, Wang X C, He L H, Luo S Z, Hu W H, Tong Q N, Ding D J and Liu F C 2019 Chin. Phys. B 28 063201 [26] Chen Z, Morishita T, Le A T, Wickenhauser M, Tong X M and Lin C D 2006 Phys. Rev. A 74 053405 [27] Augst S, Strickland D, Meyerhofer D D, Chin S L and Eberly J H 1989 Phys. Rev. Lett. 63 2212 [28] Yuan J, Ma Y, Li R, Ma H, Zhang Y, Ye D, Shen Z, Yan T, Wang X, Weidemüller M and Jiang Y 2020 Chin. Phys. Lett. 37 053201 [29] Morishita T and Lin C D 2013 Phys. Rev. A 87 063405 [30] Potvliege R M and Vuić S 2006 Phys. Scr. 74 C55 [31] Schuricke M, Zhu G, Steinmann J, Simeonidis K, Ivanov I, Kheifets A, Grum-Grzhimailo A N, Bartschat K, Dorn A and Ullrich J 2011 Phys. Rev. A 83 023413 [32] Jheng S D and Jiang T F 2013 J. Phys. B: At. Mol. Opt. Phys. 46 115601 [33] Hart N A, Strohaber J, Kolomenskii A A, Paulus G G, Bauer D and Schuessler H A 2016 Phys. Rev. A 93 063426 [34] Wessels P, Ruff B, Kroker T, Kazansky A K, Kabachnik N M, Sengstock K, Drescher M and Simonet J 2018 Commun. Phys. 1 32 [35] Marchenko T, Muller H G, Schafer K J and Vrakking M J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095601 [36] Marchenko T, Muller H G, Schafer K J and Vrakking M J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 185001 [37] Kaminski P, Wiehle R, Renard V, Kazmierczak A, Lavorel B, Faucher O and Witzel B 2004 Phys. Rev. A 70 053413 [38] Barth I and Lein M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204016 [39] He P L, Takemoto N and He F 2015 Phys. Rev. A 91 063413 [40] Kosloff R and Kosloff D 1986 J. Comput. Phys. 63 363 [41] Delibašić H and Petrović V 2019 Chin. Phys. B 28 083201 [42] Jayadevan A P and Thayyullathil R B 2001 J. Phys. B: At. Mol. Opt. Phys. 34 699 [43] Radhakrishnan R and Thayyullathil R B 2004 Phys. Rev. A 69 033407 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|