Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 044211    DOI: 10.1088/1674-1056/aca39b

Spontaneous emission from Λ-type three-level atom driven by bichromatic field in anisotropic double-band photonic crystals

Kai Ling(凌凯)1, Li Jiang(姜丽)1,†, Ren-Gang Wan(万仁刚)2,‡, and Zhi-Hai Yao(姚治海)1
1 Changchun University of Science and Technology, Changchun 130000, China;
2 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
Abstract  The spontaneous emission property of Λ-type three-level atom driven by the bichromatic field in the anisotropic double-band photonic crystal is calculated by n-times iteration method. The influence of different parameters on atomic spontaneous emission is studied, and the phenomena of atomic spontaneous emission are explained in the dressed state representation. It is found that the spontaneous emission spectra of the atom driven by the bichromatic field presents a multi-peak comb structure. The position of the emission peak is determined by the initial state of the atom, and the interval between the neighboring emission peaks is the detuning δ of the bichromatic field. When the ratio between Rabi frequency intensity and the detuning δ of the bichromatic field remains unchanged, the intensity of each emitted peak remains invariant. The spontaneously emitted peak can be annihilated in the band gap and enhanced near the band edge in the anisotropic photonic crystals. Meanwhile, we also observe the fluorescence quenching phenomenon in the spontaneous emission spectra. The research in this paper provides the theoretical guidance for the control of atomic spontaneous emission.
Keywords:  photonic crystal      bichromatic field      spontaneous emission spectra      dressed state  
Received:  30 August 2022      Revised:  15 November 2022      Accepted manuscript online:  17 November 2022
PACS:  42.70.Qs (Photonic bandgap materials)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the Natural Science Foundation of Jilin Province of China (Grant No. 20220101031JC).
Corresponding Authors:  Li Jiang, Ren-Gang Wan     E-mail:;

Cite this article: 

Kai Ling(凌凯), Li Jiang(姜丽), Ren-Gang Wan(万仁刚), and Zhi-Hai Yao(姚治海) Spontaneous emission from Λ-type three-level atom driven by bichromatic field in anisotropic double-band photonic crystals 2023 Chin. Phys. B 32 044211

[1] Kamaha J S D, Talla M J H, Noubissie S, Fotsin H B and Woafo P 2022 Opt. Quantum Electron. 54 1
[2] Zeinab K, Saeed G and Mohammad M 2016 Quantum Inform. Proc. 15 199
[3] Chen J Y, Song F, Ma Y C, Wang Z P and Yu B L 2017 Laser Phys. Lett. 14 095201
[4] Chen J Y, Song F, Wang Z P and Yu B L 2018 Laser Phys. Lett. 15 65205
[5] Fleischhauer M, Matsko A B and Scully M O 2000 Phys. Rev. A 62 013808
[6] Ottaviani C, Vitali D, Artoni M, Cataliotti F and Tombesi P 2003 Phys. Rev. Lett. 90 197902
[7] Seke J and Herfort W N 1988 Phys. Rev. A 38 833
[8] Mollow B R 1969 Phys. Rev. 188 1969
[9] Zhu S Y, Narducci L M and Scully M O 1995 Phys. Rev. A 52 4791
[10] Hu L, Hu X M and Hu Q M 2021 Chin. Phys. B 30 64211
[11] Ding C L, Li J H and Yang X X 2010 Opt. Commun. 283 2705
[12] Qi T, Huo X X, Zhang J and Liu X S 2020 Chin. Phys. B 29 053201
[13] Zhang H F, Yuan J P, Wang L R, Xiao L T and Jia S T 2021 Chin. Phys. B 30 053202
[14] Hu X M, Xu Q, Li J Y, Li X X, Shi W X and Zhang X 2006 Opt. Commun. 260 196
[15] Hu X M, Shi W X, Xu Q, Guo H J, Li J Y and Li X X 2006 Phys. Lett. A 352 543
[16] Jin K, Xie X T and Jiang Z Y 2013 Chin. Phys. B 22 014205
[17] Zhang L Q, Zhu C X, Yu S C, Zhou Z R and Ge D H 2021 Results Phys. 31 105054
[18] Yang Y P, Fleischhauer M and Zhu S Y 2003 Phys. Rev. A 68 043805
[19] Zhou R L, Peng J C, Li H J, Zhang G M and Lin F 2003 Spectrosc. Spect. Anal. 23 657
[20] Zhang S Q, Li H, Li M X, Liu X H and Song L J 2020 Int. J. Theor. Phys. 59 2880
[21] Huang X S, Liu H L and Dong W 2012 Chin. Phys. B 21 054218
[22] Zhang K, Zhu Y P, Jiang L and Zhang H Z 2010 Chin. Phys. B 19 054206
[23] Roshan E S 2012 Commun. Theor. Phys. 57 115
[24] Roshan E S 2013 J. Mod. Opt. 60 713
[25] Jiang L, Wan R G and Yao Z H 2016 Chin. Phys. B 25 104204
[26] Liu R G 2014 Int. J. Theor. Phys. 53 4351
[27] Peng L, Nakajima T and Ning X 2006 Phys. Rev. A 74 043408
[28] Kim H, Park J R and Lee H 2000 J. Phys. B: At, Mol. Opt. Phys. 33 1703
[29] Wu J H, Li A J, Ding Y, Zhao Y C and Gao J Y 2005 Phys. Rev. A 72 023802
[1] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[2] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[5] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[6] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[9] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[12] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[13] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[14] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[15] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
No Suggested Reading articles found!