ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber |
Lianzhen Zhang(张连震), Xuedian Zhang(张学典)†, Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉) |
Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
|
Abstract The research of high-performance polarization controllers is of great significance for expanding the application field of polarization optics. Here, a polarization switch is demonstrated by using a dual-core photonic crystal fiber (DCPCF) with four symmetrical air holes, placed above and below each core, filled with magnetic fluid (MF). The switch, which utilizes a magnetic field to change the coupling length ratio of the x and y polarization modes, enables dynamic tuning of the polarization state and extinction ratio. Numerical results show that when the working length is 36.638 mm, the magneto-optical polarization switch can operate in four communication bands, i.e., 1509 nm to 1520 nm, 1544 nm to 1556 nm, 1578 nm to 1591 nm, and 1611 nm to 1624 nm. Moreover, the extinction ratio (ER) is greater than 20 dB in the fiber length range of 38.5 mm to 38.7 mm, indicating that the device has a good fault tolerance for the interception of the fiber length.
|
Received: 07 August 2022
Revised: 04 October 2022
Accepted manuscript online: 14 October 2022
|
PACS:
|
42.25.Ja
|
(Polarization)
|
|
42.81.-i
|
(Fiber optics)
|
|
42.81.Gs
|
(Birefringence, polarization)
|
|
42.81.Wg
|
(Other fiber-optical devices)
|
|
Fund: Project supported by the National Key Research and Development Program of China “National Quality Infrastructure” (Grant No. 2021YFF0600902). |
Corresponding Authors:
Xuedian Zhang
E-mail: xdzhang@usst.edu.cn
|
Cite this article:
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉) Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber 2023 Chin. Phys. B 32 024205
|
[1] Huard S 1997 Polarization of light (Wiley-VCH) p. 348 [2] He C, He H, Chang J, Chen B, Ma H and Booth M J 2021 Light: Sci. Appl. 10 194 [3] Huang C P, Wang Q J, Yin X G, Zhang Y, Li J Q and Zhu Y Y J A O M 2014 Adv. Opt. Mater. 2 723 [4] Li J, Chen S, Yang H, Li J, Yu P, Cheng H, Gu C, Chen H T and Tian J 2015 Adv. Funct. Mater. 25 704 [5] L B JOSA, p. 665 [6] Schledermann M and Skibowski 1971 Appl. Opt. 10 321 [7] Chen Z, Yang J, Wong W H, Pun E Y B and Wang C 2021 Photon. Res. 9 2319 [8] Sun C, Yu Y, Ding Y, Li Z, Qi W and Zhang X 2020 Photon. Res. 8 978 [9] Chen N, Zhang X, Lu X, Zhang Z, Mu Z and Chang M 2020 Micromachines 11 706 [10] Zhang X, Liu Z, Gui Y, Gan H, Guan Y, He L, Wang X, Shen X and Dai S 2021 Opt. Express 29 39601 [11] Wang J, Pei L, Weng S, Wu L, Li J and Ning T 2018 Appl. Opt. 57 3847 [12] Zi J, Li S, An G and Fan Z 2016 Opt. Commun. 363 80 [13] Shuo L, Shu-Guang L and Ying D 2012 Opt. Laser. Technol. 44 1813 [14] Hu W, Yang N, Wu L, Cheng P, Cheng S, Hu X, Li Q, Zhou A, Yang M and Guo D 2022 J. Lightwave Technol. 40 2128 [15] Wang J, Pei L, Weng S, Wu L, Huang L, Ning T and Li J 2017 J. Lightwave Technol. 35 2772 [16] Issa N A, van Eijkelenborg M A, Fellew M, Cox F, Henry G and Large M C 2004 Opt. Lett. 29 1336 [17] Wang Y, Li S, Li J, Guo Y and Wang M 2021 J. Lightwave Technol. 39 1791 [18] Yan X, Guo Z, Cheng T and Li S 2020 Opt. Laser. Technol. 126 106125 [19] Chen N, Chang M, Zhang X, Zhou J, Lu X and Zhuang S 2019 Nanomaterials 9 1587 [20] Cheng X, Zhou X, Tao L, Yu W, Liu C, Cheng Y, Ma C, Shang N, Xie J and Liu K 2020 Nanoscale 12 14472 [21] Chen J H, Xiong Y F, Xu F and Lu Y Q 2021 Light: Sci. Appl. 10 1 [22] Yu X, Yuan Y, Xu J, Yong K T, Qu J and Song J 2019 Laser Photon. Rev. 13 1800219 [23] Dai Z F, Jiang W F, Wang L, Chen M Y, Gao Y F and Ren N E 2019 Acta Phys. Sin. 68 084206 (in Chinese) [24] Mitu S A, Kumar K V, Mollah M A, Mishra S, Ahmed K, Bui F M and Al-Zahrani F A 2022 IEEE Trans. Nanotechnol. 21 90 [25] Huang Y, Wang Y, Zhang L, Shao Y, Zhang F, Liao C and Wang Y 2019 J. Lightwave Technol. 37 1903 [26] Zhang C, Pu S, Hao Z, Wang B, Yuan M and Zhang Y 2022 Nanomaterials 12 862 [27] Tian S, Yang T, Zhang J, Xie K, Ma J, Hong L, Luo Y and Hu Z 2021 J. Lightwave Technol. 39 3297 [28] Li X, Ma R and Xia Y 2018 J. Lightwave Technol. 36 1620 [29] Liu Q, Xing L and Wu Z 2019 Opt. Commun. 452 238 [30] Gao T, Ma G, Wang Y, Gao D, Qin W, Wangb Y and Yan C 2022 IEEE Sens. J. 22 4022 [31] Horng H E, Chieh J J, Chao Y, Yang S Y, Hong C Y and Yang H C 2005 Opt. Lett. 30 543 [32] Saker K, Lahoubi M and Pu S 2021 J. Comput. Electron. 20 1326 [33] Malitson I H 1965 JOSA 55 1205 [34] Hong C Y, Yang S Y, Horng H E and Yang H C 2003 J. Appl. Phys. 94 3849 [35] Chen Y, Yang S Y, Tse W, Horng H E, Hong C Y and Yang H C 2003 Appl. Phys. Lett. 82 3481 [36] Liu J M 2005 Photonic Devices (Cambridge, UK: Cambridge University) pp. 164-210 [37] Mortensen N A 2002 Opt. Express 10 341 [38] Hong C Y, Horng H E and Yang S Y 2004 Phys. Stat. Sol. 1 1604 [39] Gao R, Jiang Y and Abdelaziz S 2013 Opt. Lett. 38 1539 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|