Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 024205    DOI: 10.1088/1674-1056/ac9a37
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber

Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉)
Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  The research of high-performance polarization controllers is of great significance for expanding the application field of polarization optics. Here, a polarization switch is demonstrated by using a dual-core photonic crystal fiber (DCPCF) with four symmetrical air holes, placed above and below each core, filled with magnetic fluid (MF). The switch, which utilizes a magnetic field to change the coupling length ratio of the x and y polarization modes, enables dynamic tuning of the polarization state and extinction ratio. Numerical results show that when the working length is 36.638 mm, the magneto-optical polarization switch can operate in four communication bands, i.e., 1509 nm to 1520 nm, 1544 nm to 1556 nm, 1578 nm to 1591 nm, and 1611 nm to 1624 nm. Moreover, the extinction ratio (ER) is greater than 20 dB in the fiber length range of 38.5 mm to 38.7 mm, indicating that the device has a good fault tolerance for the interception of the fiber length.
Keywords:  polarization switch      magnetic fluid      dual-core photonic crystal fiber  
Received:  07 August 2022      Revised:  04 October 2022      Accepted manuscript online:  14 October 2022
PACS:  42.25.Ja (Polarization)  
  42.81.-i (Fiber optics)  
  42.81.Gs (Birefringence, polarization)  
  42.81.Wg (Other fiber-optical devices)  
Fund: Project supported by the National Key Research and Development Program of China “National Quality Infrastructure” (Grant No. 2021YFF0600902).
Corresponding Authors:  Xuedian Zhang     E-mail:  xdzhang@usst.edu.cn

Cite this article: 

Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉) Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber 2023 Chin. Phys. B 32 024205

[1] Huard S 1997 Polarization of light (Wiley-VCH) p. 348
[2] He C, He H, Chang J, Chen B, Ma H and Booth M J 2021 Light: Sci. Appl. 10 194
[3] Huang C P, Wang Q J, Yin X G, Zhang Y, Li J Q and Zhu Y Y J A O M 2014 Adv. Opt. Mater. 2 723
[4] Li J, Chen S, Yang H, Li J, Yu P, Cheng H, Gu C, Chen H T and Tian J 2015 Adv. Funct. Mater. 25 704
[5] L B JOSA, p. 665
[6] Schledermann M and Skibowski 1971 Appl. Opt. 10 321
[7] Chen Z, Yang J, Wong W H, Pun E Y B and Wang C 2021 Photon. Res. 9 2319
[8] Sun C, Yu Y, Ding Y, Li Z, Qi W and Zhang X 2020 Photon. Res. 8 978
[9] Chen N, Zhang X, Lu X, Zhang Z, Mu Z and Chang M 2020 Micromachines 11 706
[10] Zhang X, Liu Z, Gui Y, Gan H, Guan Y, He L, Wang X, Shen X and Dai S 2021 Opt. Express 29 39601
[11] Wang J, Pei L, Weng S, Wu L, Li J and Ning T 2018 Appl. Opt. 57 3847
[12] Zi J, Li S, An G and Fan Z 2016 Opt. Commun. 363 80
[13] Shuo L, Shu-Guang L and Ying D 2012 Opt. Laser. Technol. 44 1813
[14] Hu W, Yang N, Wu L, Cheng P, Cheng S, Hu X, Li Q, Zhou A, Yang M and Guo D 2022 J. Lightwave Technol. 40 2128
[15] Wang J, Pei L, Weng S, Wu L, Huang L, Ning T and Li J 2017 J. Lightwave Technol. 35 2772
[16] Issa N A, van Eijkelenborg M A, Fellew M, Cox F, Henry G and Large M C 2004 Opt. Lett. 29 1336
[17] Wang Y, Li S, Li J, Guo Y and Wang M 2021 J. Lightwave Technol. 39 1791
[18] Yan X, Guo Z, Cheng T and Li S 2020 Opt. Laser. Technol. 126 106125
[19] Chen N, Chang M, Zhang X, Zhou J, Lu X and Zhuang S 2019 Nanomaterials 9 1587
[20] Cheng X, Zhou X, Tao L, Yu W, Liu C, Cheng Y, Ma C, Shang N, Xie J and Liu K 2020 Nanoscale 12 14472
[21] Chen J H, Xiong Y F, Xu F and Lu Y Q 2021 Light: Sci. Appl. 10 1
[22] Yu X, Yuan Y, Xu J, Yong K T, Qu J and Song J 2019 Laser Photon. Rev. 13 1800219
[23] Dai Z F, Jiang W F, Wang L, Chen M Y, Gao Y F and Ren N E 2019 Acta Phys. Sin. 68 084206 (in Chinese)
[24] Mitu S A, Kumar K V, Mollah M A, Mishra S, Ahmed K, Bui F M and Al-Zahrani F A 2022 IEEE Trans. Nanotechnol. 21 90
[25] Huang Y, Wang Y, Zhang L, Shao Y, Zhang F, Liao C and Wang Y 2019 J. Lightwave Technol. 37 1903
[26] Zhang C, Pu S, Hao Z, Wang B, Yuan M and Zhang Y 2022 Nanomaterials 12 862
[27] Tian S, Yang T, Zhang J, Xie K, Ma J, Hong L, Luo Y and Hu Z 2021 J. Lightwave Technol. 39 3297
[28] Li X, Ma R and Xia Y 2018 J. Lightwave Technol. 36 1620
[29] Liu Q, Xing L and Wu Z 2019 Opt. Commun. 452 238
[30] Gao T, Ma G, Wang Y, Gao D, Qin W, Wangb Y and Yan C 2022 IEEE Sens. J. 22 4022
[31] Horng H E, Chieh J J, Chao Y, Yang S Y, Hong C Y and Yang H C 2005 Opt. Lett. 30 543
[32] Saker K, Lahoubi M and Pu S 2021 J. Comput. Electron. 20 1326
[33] Malitson I H 1965 JOSA 55 1205
[34] Hong C Y, Yang S Y, Horng H E and Yang H C 2003 J. Appl. Phys. 94 3849
[35] Chen Y, Yang S Y, Tse W, Horng H E, Hong C Y and Yang H C 2003 Appl. Phys. Lett. 82 3481
[36] Liu J M 2005 Photonic Devices (Cambridge, UK: Cambridge University) pp. 164-210
[37] Mortensen N A 2002 Opt. Express 10 341
[38] Hong C Y, Horng H E and Yang S Y 2004 Phys. Stat. Sol. 1 1604
[39] Gao R, Jiang Y and Abdelaziz S 2013 Opt. Lett. 38 1539
[1] Laser beam shaping with magnetic fluid-based liquid deformable mirrors
Zhi-Zheng Wu(吴智政), Zhu Zhang(张柱), Xiang-Hui Kong(孔祥会), Jun-Qiu Wu(吴君秋), Tao Wang(王韬), Mei Liu(刘梅), Shao-Rong Xie(谢少荣). Chin. Phys. B, 2017, 26(7): 074201.
[2] Reconfigurable dynamic all-optical chaotic logic operations in an optically injected VCSEL
Dong-Zhou Zhong(钟东洲), Ge-Liang Xu(许葛亮), Wei Luo(罗伟), Zhen-Zhen Xiao(肖珍珍). Chin. Phys. B, 2017, 26(12): 124204.
[3] Ultra-broadband polarization splitter based on graphene layer-filled dual-core photonic crystal fiber
Hui Zou(邹辉), Hui Xiong(熊慧), Yun-Shan Zhang(张云山), Yong Ma(马勇), Jia-Jin Zheng(郑加金). Chin. Phys. B, 2017, 26(12): 124216.
[4] Power-induced polarization switching and bistability characteristics in 1550-nm VCSELs subjected to orthogonal optical injection
Chen Jian-Jun (陈建军), Xia Guang-Qiong (夏光琼), Wu Zheng-Mao (吴正茂). Chin. Phys. B, 2015, 24(2): 024210.
[5] Tunable negative-index photonic crystals using colloidal magnetic fluids
Geng Tao (耿滔), Wang Xin (王新), Wang Yan (王岩), Dong Xiang-Mei (董祥美). Chin. Phys. B, 2015, 24(12): 124208.
[6] All-fiber optical modulator based on no-core fiber and magnetic fluid as cladding
Chen Yao-Fei (陈耀飞), Han Qun (韩群), Liu Tie-Gen (刘铁根). Chin. Phys. B, 2015, 24(1): 014214.
[7] Tunable magneto–optic modulation based on magnetically responsive nanostructured magnetic fluid
Bai Xue-Kun(白学坤),Pu Sheng-Li(卜胜利), Wang Lun-Wei(王伦唯), Wang Xiang(王响), Yu Guo-Jun(于国君), and Ji Hong-Zhu(纪红柱) . Chin. Phys. B, 2011, 20(10): 107501.
[8] Polarization switching in a quasi-isotropic microchip Nd:YAG laser induced by optical feedback
Ren Cheng(任成), Tan Yi-Dong(谈宜东), and Zhang Shu-Lian(张书练). Chin. Phys. B, 2010, 19(2): 024206.
No Suggested Reading articles found!