Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 044207    DOI: 10.1088/1674-1056/ac8929

Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm

Yi-Han Wang(王奕涵)1 and Hai-Feng Zhang(章海锋)2,†
1 Bell Honors School of Nanjing University of Posts and Telecommunication, Nanjing 210023, China;
2 College of Electronic and Optical Engineering&College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  Using an improved particle swarm optimization algorithm (IPSO) to drive a transfer matrix method, a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale. The effective dielectric function, which determines the absorption of the plasma, is subject to the basic parameters of the plasma, causing the absorption of the proposed absorber to be easily modulated by these parameters. Compared with other quasi-periodic sequences, the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth. Under further optimization using IPSO with 14 parameters set to be optimized, the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed. IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption, and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure. The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1 ν1 to absorption in the angle domain and frequency domain are investigated. Additionally, the impedance match theory and the interference field theory are introduced to express the findings of the algorithm.
Keywords:  magnetized plasma photonic crystals      improved particle swarm optimization algorithm      nonreciprocal ultra-wide band absorption      angular insensitivity  
Received:  21 April 2022      Revised:  30 June 2022      Accepted manuscript online:  12 August 2022
PACS:  42.70.Qs (Photonic bandgap materials)  
  45.10.Db (Variational and optimization methods)  
  94.30.ct (Plasma sheet)  
Corresponding Authors:  Hai-Feng Zhang     E-mail:,

Cite this article: 

Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋) Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm 2023 Chin. Phys. B 32 044207

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Kim S H, Kim S and Kee C S 2016 Phys. Rev. B 94 085118
[4] Meng F, Li Y, Li S, Lin H, Jia B and Huang X 2017 J. Lightw. Technol. 35 1670
[5] Aly A H, Sayed F A and Elsayed H A 2020 Appl. Opt. 59 4796
[6] Avendano C and Reyes A 2017 Liq. Cryst. 44 1620
[7] McGurn A.R. 1999 Phys. Lett. A 251 322
[8] Chen S, Yang X, Meng X, Dong G, Wang Y, Wang L and Huang Z 2013 Chin. Phys. Lett. 30 054206
[9] Georgaki M I, Botsialas A, Argitis P, Papanikolaou N, Oikonomou P, Raptis I, Rysz J, Budkowski A and Chatzichristidi M 2014 Microelectron. Eng. 115 55
[10] Beiu R M, Beiu V and Duma V F 2017 Opt. Express 25 23388
[11] Lin W H, Wu C J, Yang T J and Chang S J 2010 Opt. Express 18 27155
[12] Lee H and Wu J 2010 J. Appl. Phys. 107 09E149
[13] Liu Y, Zhong R, Huang J, Lv Y, Han C and Liu S 2019 Opt. Express 27 7393
[14] Cai Y and Xu K 2018 Opt. Express 26 31693
[15] He S and Chen T 2013 IEEE Trans. Terahertz Sci. Technol. 3 757
[16] Wu C, Yang T, Li C and Wu P 2012 Prog. Electromagn. Res. 126 521
[17] Tan H, Jin C, Zhuge L and Wu X 2019 IEEE Trans. Plasma Sci 47 3986
[18] Hojo H and Mase A 2004 J. Plasma Fusion Res. 80 89
[19] Dong H, Wang J and Fung K 2013 Opt. Lett. 38 5232
[20] Ma Y, Zhang H, Liu T and Li W 2019 J. Opt. Soc. Amer:. B, Opt. Phys. 36 2250
[21] Zhang J and Benson T M 2013 J. Mod. Opt. 60 1804
[22] Fang Y, Wang Y and Xia J 2019 Acta Phys. Sin. 68 194201 (in Chinese)
[23] Amel L and Abdelmadjid B 2015 Chin. Phys. Lett. 32 54204
[24] Li Q, Wu R, Yang Y and Sun H 2013 Chin. Phys. Lett. 30 074208
[25] Chen Y, Zhu J, Xie Y, Feng N and Liu Q 2019 Nanoscale 11 9749
[26] Kennedy J and Eberhart R 1995 Proc. IEEE Int. Conf. on Neural Networks, November 27, 1995-December 1, 1995, Perth, WA, Australia, p. 1942
[27] Shi Y and Eberhart R 1998 Proc. IEEE Int. Conf. on Evolutionary Computation, May 4-9, 1998, Anchorage, AK, USA, pp. 69-73
[28] Farnad B, Jafarian A and Baleanu D 2018 Appl. Math. Model. 55 652
[29] Liu D and Sen H 2019 Acta Phys. Sin. 68 024206 (in Chinese)
[30] Ginzberg V L 1970 The Propagation of Electromagnetic Waves in Plasmas (New York: Pergamon Press)
[31] Qi L, Yang Z, Lan F, Gao X and Shi Z 2010 Phys. Plasmas 17 042501
[1] Spontaneous emission from Λ-type three-level atom driven by bichromatic field in anisotropic double-band photonic crystals
Kai Ling(凌凯), Li Jiang(姜丽), Ren-Gang Wan(万仁刚), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2023, 32(4): 044211.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[4] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[5] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[6] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[7] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[8] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[9] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[10] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[11] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[12] One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
Sepehr Razi, Fatemeh Ghasemi. Chin. Phys. B, 2019, 28(12): 124205.
[13] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[14] Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal
Li Jiang(姜丽), Ren-Gang Wan(万仁刚). Chin. Phys. B, 2019, 28(2): 024206.
[15] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
No Suggested Reading articles found!