|
|
Floquet scattering through a parity-time symmetric oscillating potential |
Xuzhen Cao(曹序桢)1,2, Zhaoxin Liang(梁兆新)3,†, and Ying Hu(胡颖)1,2,‡ |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 Department of Physics, Zhejiang Normal University, Jinhua 321004, China |
|
|
Abstract We investigate the scattering of a particle from a trapping potential that is subjected to weak, parity-time symmetric periodic drivings. Using the Floquet theory, we derive the scattering matrix and calculate the transmittance of the incident particle. When the driving is purely coherent, our calculation recovers the known result and the transmission spectrum shows the familiar, bound-state-induced Fano resonances. When the driving is purely incoherent, we find the Fano resonances still occur, but the lineshape of each resonance is reversed compared to the coherent-driving counterpart. Intriguingly, the transmission resonances disappear when both the coherent and incoherent driving fields are present with equal amplitudes. This phenomena can be seen as a manifestation of the non-reciprocal coupling of Floquet channels in the frequency domain. Notably, when the frequency up-conversion is absent, the transmission is such as if there is no driving at all, even when the driving strength increases.
|
Received: 21 September 2022
Revised: 09 November 2022
Accepted manuscript online: 17 November 2022
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Nk
|
(Scattering theory)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant No. 11874038), the Zhejiang Provincial Natural Science Foundation (Grant No. LZ21A040001), the National Natural Science Foundation of China (Grant No. 12074344), and the Key Projects of the Natural Science Foundation of China (Grant No. 11835011). |
Corresponding Authors:
Zhaoxin Liang, Ying Hu
E-mail: zhxliang@zjnu.edu.cn;huying@sxu.edu.cn
|
Cite this article:
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖) Floquet scattering through a parity-time symmetric oscillating potential 2023 Chin. Phys. B 32 030302
|
[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 [2] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005 [3] Bender C M, Berntson B K, Parker D and Samuel E 2013 Am. J. Phys. 81 173 [4] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902 [5] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192 [6] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F and Scherer A 2013 Nat. Mater. 12 108 [7] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524 [8] Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394 [9] Zhang F, Feng Y, Chen X, Ge L and Wan W 2020 Phys. Rev. Lett. 124 053901 [10] Zhao J, Liu Y, Wu L, Duan C K, Liu Y X and Du J 2020 Phys. Rev. Appl. 13 014053 [11] Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972 [12] Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Science 346 975 [13] Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L and Nori F 2014 Phys. Rev. Lett. 113 053604 [14] Lü X Y, Jing H, Ma J Y and Wu Y 2015 Phys. Rev. Lett. 114 253601 [15] Schönleber D W, Eisfeld A and El-Ganainy R 2016 New J. Phys. 18 045014 [16] Jing H, Özdemir Ş K, Lü H and Nori F 2017 Sci. Rep. 7 3386 [17] Stovneng J A and Hauge E H 1989 J. Stat. Phys. 57 841 [18] Wagner M 1994 Phys. Rev. B 49 16544 [19] Wagner M 1995 Phys. Rev. A 51 798 [20] Saraga D S and Bianchi M S de 1997 Helv. Phys. Acta 70 751 [21] Sun Q f, Wang J and Lin T H 1998 Phys. Rev. B 58 13007 [22] Burmeister G and Maschke K 1998 Phys. Rev. B 57 13050 [23] Li W and Reichl L E 1999 Phys. Rev. B 60 15732 [24] Kouwenhoven L P, Jauhar S, Orenstein J, McEuen P L, Nagamune Y, Motohisa J and Sakaki H 1994 Phys. Rev. Lett. 73 3443 [25] Blick R H, Haug R J, Weide D W van der, Klitzing K von and Eberl K 1995 Appl. Phys. Lett. 67 3924 [26] Drexler H, Scott J S, Allen S J, Campman K L and Gossard A C 1995 Appl. Phys. Lett. 67 2816 [27] Keay B J, Allen S J, Jr, Galán J, Kaminski J P, Campman K L, Gossard A C, Bhattacharya U and Rodwell M J W 1995 Phys. Rev. Lett. 75 4098 [28] Thuberg D, Reyes S A and Eggert S 2016 Phys. Rev. B 93 180301 [29] Mostafazadeh A 2009 Phys. Rev. Lett. 102 220402 [30] Longhi S 2017 Europhys. Lett. 117 10005 [31] Shobe K, Kuramoto K, Imura K I and Hatano N 2021 Phys. Rev. Research 3 013223 [32] Shirley J H 1965 Phys. Rev. 138 B979 [33] Fano U 1961 Phys. Rev. 124 1866 [34] Limonov M F, Rybin M V, Poddubny A N and Kivshar Y S 2017 Nat. Photon. 11 543 [35] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803 [36] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808 [37] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079 [38] Zhou H, Peng C, Yoon Y, Hsu C W, Nelson K A, Fu L, Joannopoulos J D, Soljačić M and Zhen B 2018 Science 359 1009 [39] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015 [40] Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761 [41] Wanjura C C, Brunelli M and Nunnenkamp A 2020 Nat. Commun. 11 3149 [42] Hu B, Zhang Z, Zhang H, Zheng L, Xiong W, Yue Z, Wang X, Xu J, Cheng Y, Liu X and Christensen J 2021 Nature 597 655 [43] Liang Q, Xie D, Dong Z, Li H, Li H, Gadway B, Yi W and Yan B 2022 Phys. Rev. Lett. 129 070401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|