CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice |
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文)† |
School of Physics and Technology, University of Jinan, Jinan 250022, China |
|
|
Abstract The quantum anomalous Hall effect (QAHE) has special quantum properties that are ideal for possible future spintronic devices. However, the experimental realization is rather challenging due to its low Curie temperature and small non-trivial bandgap in two-dimensional (2D) materials. In this paper, we demonstrate through first-principles calculations that monolayer Co$_{2}$Te material is a promising 2D candidate to realize QAHE in practice. Excitingly, through Monte Carlo simulations, it is found that the Curie temperature of single-layer Co$_{2}$Te can reach 573 K. The band crossing at the Fermi level in monolayer Co$_{2}$Te is opened when spin-orbit coupling is considered, which leads to QAHE with a sizable bandgap of $E_{\rm g} = 96$ meV, characterized by the non-zero Chern number $\left( C = 1 \right)$ and a chiral edge state. Therefore, our findings not only enrich the study of quantum anomalous Hall effect, but also broaden the horizons of the spintronics and topological nanoelectronics applications.
|
Received: 24 July 2022
Revised: 03 November 2022
Accepted manuscript online: 07 November 2022
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.43.-f
|
(Quantum Hall effects)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), the Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043), and the National Natural Science Foundation of China (Grant No. 52173238). |
Corresponding Authors:
Chang-Wen Zhang
E-mail: ss_zhangchw@ujn.edu.cn
|
Cite this article:
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文) First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice 2023 Chin. Phys. B 32 027101
|
[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 [2] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [3] Chang C Z, Zhang J S, Feng X, et al. 2013 Science 340 167 [4] Zhang H, Lazo C, Blügel S, Heinze S and Mokrousov Y 2012 Phys. Rev. Lett. 108 056802 [5] Garrity K F and Vanderbilt D 2013 Phys. Rev. Lett. 110 116802 [6] Kim C K, Lee I, Lee J, Billinge S, Zhong R, Schneeloch J, Liu T, Tranquada J, Gu G and Davis J C S 2015 Proc. Natl. Acad. Sci. USA 112 1316 [7] Lachman E O, Young A F, Richardella A, Cuppens J, Naren H R, Anahory Y, Meltzer A Y, Kandala A, Kempinger S, Myasoedov Y, Huber M E, Samarth N and Zeldov E 2015 Sci. Adv. 1 e1500740 [8] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [9] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [10] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L and Feng J 2012 Nat. Commun. 3 887 [11] Xu M S, Liang T, Shi M M and Chen H Z 2013 Chem. Rev. 113 3766 [12] Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Muller D A and Park J 2012 Nature 488 627 [13] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112 [14] Zhang H J, Li Y F, Hou J H, Tu K X and Chen Z F 2016 J. Am. Chem. Soc. 138 5644 [15] Zhang L, Zhang C W, Zhang S F, Ji W X, Li P and Wang P J 2019 Nanoscale 11 5666 [16] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433 [17] Li S S, Ji W X, Hu S J, Zhang C W and Yan S S 2017 ACS Appl. Mater. Inter. 9 41443 [18] Groot R A D, Mueller F M, Engen P G V and Buschow K H J 1984 J. Appl. Phys. 55 2151 [19] Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R and Venkatesan T 1998 Phys. Rev. Lett. 81 1953 [20] Mavropoulos P, Ležaić M, Stefan and Blügel S 2005 Phys. Rev. B 72 174428 [21] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Nat. Phys. 10 731 [22] Wu J S, Liu J and Liu X J 2014 Phys. Rev. Lett. 113 136403 [23] Wang Y P, Li S S, Zhang C W, Zhang S F, Ji W X, Li P and Wang P J 2018 J. Mater. Chem. C 6 10284 [24] Wu S C, Shan G C and Yan B H 2014 Phys. Rev. Lett. 113 256401 [27] Zhou P, Sun C Q and Sun L Z 2016 Nano Lett. 16 6235 [28] Zhang M H, Zhang C W, Wang P J and Li S S 2018 Nanoscale 10 20226 [29] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802 [30] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101 [31] Li X, Cao T, Niu Q, Shi J R and Feng J 2013 Proc. Natl. Acad. Sci. USA 110 3738 [32] Cai T Y, Li X, Wang F, Ju S, Feng J and Gong C D 2015 Nano Lett. 15 6434 [33] Chen X B, Liu Y Z, Gu B L, Duan W H and Liu F 2014 Phys. Rev. B 90 121403 [34] Garrity K F and Vanderbilt D 2014 Phys. Rev. B 90 121103 [35] Zhang J Y, Zhao B, Xue Y, Zhou T and Yang Z Q 2018 Phys. Rev. B 97 125430 [36] Blöchl P E 1994 Phys. Rev. B 50 17953 [37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 78 1396 [39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [40] Wang X J, Yates J R, Souza I and Vanderbilt D 2006 Phys. Rev. B 74 195118 [41] Brouder C, Panati G, Calandra M, Mourougane C and Marzari N 2007 Phys. Rev. Lett. 98 046402 [42] López Sancho M P, López Sancho J M and Rubio J 1984 J. Phys. F 14 1205 [43] Ji W X, Zhang B M, Zhang S F, Zhang C W, Ding M, Li P and Wang P J 2017 J. Mater. Chem. C 5 8504 [44] Ertekin E, Chrzan D C and Daw M S 2009 Phys. Rev. B 79 155421 [45] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [46] Li X Y, Ji W X, Wang P J and Zhang C W 2021 Nanoscale Adv. 3 847 [47] Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E G and Niu Q 2004 Phys. Rev. Lett. 92 037204 [48] Yao Y and Fang Z 2005 Phys. Rev. Lett. 95 156601 [49] Taherinejad M, Garrity K F and Vanderbilt D 2013 Phys. Rev. B 89 115102 [50] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 178 685 [51] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y and D M Treger 2001 Science. 294 1488 [52] Felser C, Fecher G H and Balke B 2007 Angew. Chem. Int. Ed. 46 668 [53] Mavropoulos P, Sato K, Zeller R, Dederichs P H, Popescu V and Ebert H 2004 Phys. Rev. B 69 054424 [54] Huang B, Liu F, Wu J, Gu B L and Duan W H 2008 Phys. Rev. B 77 153411 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|