Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 027102    DOI: 10.1088/1674-1056/ac6581
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Mobility edges generated by the non-Hermitian flatband lattice

Tong Liu(刘通)1,† and Shujie Cheng(成书杰)2
1 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  We study the cross-stitch flatband lattice subject to the quasiperiodic complex potential exp(ix). We firstly identify the exact expression of quadratic mobility edges through analytical calculation, then verify the theoretical predictions by numerically calculating the inverse participation ratio. Further more, we study the relationship between the real-complex spectrum transition and the localization-delocalization transition, and demonstrate that mobility edges in this non-Hermitian model not only separate localized from extended states but also indicate the coexistence of complex and real spectrum.
Keywords:  non-Hermitian      quasiperiodic      mobility edge  
Received:  04 February 2022      Revised:  01 April 2022      Accepted manuscript online:  08 April 2022
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.23.An (Theories and models; localized states)  
  61.44.Fw (Incommensurate crystals)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200737), NUPTSF (Grant Nos. NY220090 and NY220208), the National Natural Science Foundation of China (Grant No. 12074064), the Innovation Research Project of Jiangsu Province, China (Grant No. JSSCBS20210521), and China Postdoctoral Science Foundation (Grant No. 2022M721693).
Corresponding Authors:  Tong Liu     E-mail:  t6tong@njupt.edu.cn

Cite this article: 

Tong Liu(刘通) and Shujie Cheng(成书杰) Mobility edges generated by the non-Hermitian flatband lattice 2023 Chin. Phys. B 32 027102

[1] Daley A J 2014 Adv. Phys. 63 77
[2] Jin L and Song Z 2019 Phys. Rev. B 99 081103(R)
[3] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[4] Hamazaki R, Kawabata K and Ueda M 2019 Phys. Rev. Lett. 123 090603
[5] Liu T, Cheng S, Guo H and Gao X 2021 Phys. Rev. B 103 104203
[6] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
[7] Bendix O, Fleischmann R, Kottos T and Shapiro B 2009 Phys. Rev. Lett. 103 030402
[8] El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632
[9] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[10] Anderson P W 1958 Phys. Rev. 109 1492
[11] Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 18
[12] Zhou L and Han W 2021 Chin. Phys. B 30 100308
[13] Liang H and Li L 2022 Chin. Phys. B 31 010310
[14] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570
[15] Ding P and Yi W 2022 Chin. Phys. B 31 010309
[16] Zhang S, Jin L and Song Z 2022 Chin. Phys. B 31 010312
[17] Das Sarma S, He S and Xie X C 1988 Phys. Rev. Lett. 61 2144
[18] Liu T, Xianlong G, Chen S and Guo H 2017 Phys. Lett. A 381 3683
[19] Liu T and Guo H 2018 Phys. Rev. B 98 104201
[20] Biddle J and Das Sarma S 2010 Phys. Rev. Lett. 104 070601
[21] Sanchez Palencia L 2015 Nat. Phys. 11 525
[22] Liu Y, Jiang X, Cao J and Chen S 2020 Phys. Rev. B 101 174205
[23] Zeng Q and Xu Y 2020 Phys. Rev. Res. 2 033052
[24] Liu T, Guo H, Pu Y and Longhi S 2020 Phys. Rev. B 102 024205
[25] Flach S, Leykam D, Bodyfelt J D, Matthies P and Desyatnikov A S 2014 Europhys. Lett. 105 30001
[26] Liu Z, Bergholtz E J, Fan H and Läuchli A M 2012 Phys. Rev. Lett. 109 186805
[27] Bodyfelt J D, Leykam D, Danieli C, Yu X and Flach S 2014 Phys. Rev. Lett. 113 236403
[28] Danieli C, Bodyfelt J D and Flach S 2015 Phys. Rev. B 91 235134
[29] Jazaeri A and Satija I I 2001 Phys. Rev. E 63 036222
[30] Thouless D J 1974 Phys. Rep. 13 93
[31] Liu T and Xia X 2022 Phys. Rev. B 105 054201
[32] Sarnak P 1982 Commun. Math. Phys. 84 377
[1] Quantum speed limit of a single atom in a squeezed optical cavity mode
Ya-Jie Ma(马雅洁), Xue-Chen Gao(高雪晨), Shao-Xiong Wu(武少雄), and Chang-shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040308.
[2] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[3] Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁). Chin. Phys. B, 2023, 32(3): 038401.
[4] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[5] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[6] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[7] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[8] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[9] Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk-boundary correspondence
Xiaosen Yang(杨孝森), Yang Cao(曹阳), and Yunjia Zhai(翟云佳). Chin. Phys. B, 2022, 31(1): 010308.
[10] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[11] Topological properties of non-Hermitian Creutz ladders
Hui-Qiang Liang(梁辉强) and Linhu Li(李林虎). Chin. Phys. B, 2022, 31(1): 010310.
[12] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[13] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[14] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[15] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
No Suggested Reading articles found!