Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨)1, Yaling Yin(尹亚玲)1, Yang Liu(刘泱)2,†, Lin Li(李林)1, and Yong Xia(夏勇)1,3,‡
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; 2 School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China; 3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract A scheme for storage of cold molecules in a hollow optical ring generated by a metasurface grating is proposed. The characteristics and intensity distribution related to the ring's structural parameters and fabrication error tolerance are theoretically studied. The optical potential and dipole force required for the ring to trap magnesium monofluoride (MgF) molecules are also calculated. The dynamic behavior of MgF molecules in the storage ring is simulated by a Monte Carlo method, which shows that a metasurface-based optical storage ring can be used to trap molecules and is an interesting platform for research into ultracold quantum gases and their quantum-state manipulation.
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174115, 11974434, 91836103, and 11374100), the Natural Science Foundation of Guangdong Province, China (Grant No. 2020A1515011159), the Science and Technology Program of Guangzhou (Grant No. 202102080380), and Shanghai Pujiang Program (Grant No. 20PJ1403400).
Corresponding Authors:
Yang Liu, Yong Xia
E-mail: liuyang59@mail.sysu.edu.cn;yxia@phy.ecnu.edu.cn
Cite this article:
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇) Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules 2023 Chin. Phys. B 32 023301
[1] Kildishev A V, Boltasseva A and Shalaev V M 2013 Science339 1232009 [2] Chen W T, Zhu A Y and Capasso F 2020 Nat. Rev. Mater.5 604 [3] Fattal D, Li J, Peng Z, Fiorentino M and Beausoleil R G 2010 Nat. Photon.4 466 [4] Pfeiffer C and Grbic A 2013 Phys. Rev. Lett.110 197401 [5] Li L, Liu Z X, Ren X F, Wang S M, Su V C, Chen M K, Chu C H, Kuo H Y, Liu B H, Zang W B, Guo G C, Zhang L J, Wang Z L, Zhu S N and Tsai D P 2020 Science368 1487 [6] Lin D M, Fan P Y, Hasman E and Brongersma M L 2014 Science345 298 [7] Nshii C C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E A, Ironside C N, See P, Sinclair A G, Riis E and Arnold A S 2013 Nat. Nanotechnol.8 321 [8] Zhu L X, Liu X, Sain B, Wang M Y, Schlickriede C, Tang Y T, Deng J H, Li K F, Yang J, Holynski M, Zhang S, Zentgraf T, Bongs K, Lien Y H and Li G X 2020 Sci. Adv.6 eabb6667 [9] McGehee W R, Zhu W Q, Barker D S, Westly D, Yulaev A, Klimov N, Agrawal A, Eckel S, Aksyuk V and McClelland J J 2021 New J. Phys.23 013021 [10] Imhof E, Stuhl B K, Kasch B, Kroese B, Olson S E and Squires M B 2017 Phys. Rev. A96 033636 [11] Barker D S, Norrgard E B, Klimov N N, Fedchak J A, Scherschligt J and Eckel S 2019 Phys. Rev. Appl.11 064023 [12] Chen L, Huang C J, Xu X B, Lu Z T, Wang Z B, Chen G J, Zhang J Z, Tang H X, Dong C H, Liu W, Xiang G Y, Guo G C and Zou C L 2021 arXiv: 2107.07367 [13] Mo H R, Ji Z T, Zheng Y D, Liang W Y, Yu H K and Li Z Y 2021 Infrared and Laser Engineering50 32 [14] Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T and Kivshar Y S 2015 Adv. Opt. Mater.3 813 [15] Liu Z W, Steele J M, Srituravanich W, Pikus Y, Sun C and Zhang X 2005 Nano Lett.5 1726 [16] Lu F L, Sedgwick F G, Karagodsky V, Chase C and Chang-Hasnain C J 2010 Opt. Exp.18 12606 [17] Arbabi A, Horie Y, Ball A J, Bagheri M and Faraon A 2015 Nat. Commun.6 7069 [18] Wang S M, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B B, Kuan C H, Li T, Zhu S N and Tsai D P 2017 Nat. Commun.8 187 [19] Zhang H, Li T, Yin Y L, Li X J, Xia Y and Yin J P 2016 Chin. Phys. B25 087802 [20] Cai W, Yu H, Xu S, Xia M, Li T, Yin Y, Xia Y and Yin J 2018 J. Opt. Soc. Am. B35 3049 [21] Li J Y, Ye Y E, Lin C, Li L, Liu Y and Xia Y 2021 Acta Phys. Sin.70 167802 (in Chinese) [22] Yu H Y, Mao Z X, Li J Y, Ye Y E, Yin Y L, Xia Y and Yin J P 2020 J. Opt.22 045104 [23] Zhang X C, Fu W S, Lv J G, Zhang C, Zhao X, Li W Y, Zhang H 2022 Chin. Phys. B31 088103 [24] Crompvoets F M H, Bethlem H L, Jongma R T and Meijer G 2001 Nature411 174 [25] van der Poel A P P, Dulitz K, Softley T P, Bethlem H L 2015 New J. Phys.17 055012 [26] Xia Y, Yin Y L, Ji X and Yin J P 2012 Chin. Phys. Lett.29 053701 [27] Hou S Y, Wei B, Deng L Z and Yin J P 2016 Sci. Rep.6 32663 [28] Smith D R and Schultz S 2002 Phys. Rev. B65 195104 [29] Xu S P, Xia M, Gu R X, Pei C Y, Yang Z H, Xia Y and Yin J P 2019 J. Quant. Spectrosc. Radiat. Transfer236 106583 [30] Xu S P, Xia M, Yin Y N, Gu R X, Xia Y and Yin J P 2019 J. Chem. Phys.150 084302 [31] Xia M, Gu R X, Yan K, Wu D, Xu L, Xia Y and Yin J P 2021 Phys. Rev. A103 013321 [32] Gu R X, Xia M, Yan K, Wu D, Wei J, Xu L, Xia Y and Yin J P 2022 J. Quant. Spectrosc. Radiat. Transfer278 108015 [33] Yan K, Gu R X, Wu D, Wei J, Xia Y and Yin J P 2022 Front. Phys.17 42502 [34] Yin J P 2006 Phys. Rep.430 1
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.