ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Three-dimensional thermal illusion devices with arbitrary shape |
Xingwei Zhang(张兴伟)1, Xiao He(何晓)1, Linzhi Wu(吴林志)1,2 |
1 Key Laboratory of Advanced Ship Materials and Mechanics, College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China;
2 Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract Since the concept of invisible cloak was proposed by Pendry and Leonhardt in 2006, many researchers have applied the theory of coordinate transformation to thermodynamics and overcome the complexity of inhomogeneous and anisotropic of material parameters. However, only two-dimensional (2D) thermal illusion devices are researched recently. According to this situation, our study focuses on three-dimensional (3D) thermal illusion devices including shrinker (or invisible cloak), concentrator, amplifier, reshaper, and rotator with arbitrary shape in a general way. In this paper, the corresponding material parameters of thermal illusion devices mentioned above are derived based on the theory of transformation thermodynamics and the simulated results agree well with the theoretical derivations. In addition, the conventional invisible cloak just controls the temperature gradient rather than the temperature value which is more concerned in physical applications. Here, we find that the temperature value of the cloaked object can be controlled by adjusting the location of the original point of the coordinate system.
|
Received: 14 January 2019
Revised: 27 March 2019
Accepted manuscript online:
|
PACS:
|
44.10.+i
|
(Heat conduction)
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
07.05.Tp
|
(Computer modeling and simulation)
|
|
05.70.-a
|
(Thermodynamics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11702069) and the Fundamental Research Funds for the Central Universities, China (Grant No. HEUCFM180203). |
Corresponding Authors:
Xiao He, Linzhi Wu
E-mail: hit_hx@163.com;wulinzhi@hrbeu.edu.cn
|
Cite this article:
Xingwei Zhang(张兴伟), Xiao He(何晓), Linzhi Wu(吴林志) Three-dimensional thermal illusion devices with arbitrary shape 2019 Chin. Phys. B 28 064403
|
[1] |
Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
|
[2] |
Lax M and Nelson D F 1976 Phys. Rev. B 13 1777
|
[3] |
Shalaev V M 2008 Science 322 384
|
[4] |
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
|
[5] |
Zhang S, Xia C G and Fang N 2011 Phys. Rev. Lett. 106 024301
|
[6] |
Popa B I, Zigoneanu L and Cummer S A 2011 Phys. Rev. Lett. 106 253901
|
[7] |
Brun M, Guenneau S and Movchan A B 2009 Appl. Phys. Lett. 94 061903
|
[8] |
Zhang S, Genov D A, Sun C and Zhang X 2008 Phys. Rev. Lett. 100 123002
|
[9] |
Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
|
[10] |
Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
|
[11] |
Chen T Y, Weng C N and Chen J S 2008 Appl. Phys. Lett. 93 114103
|
[12] |
Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
|
[13] |
Han T C, Bai X, Gao D L, Thong J T L, Li B W and Qiu C W 2014 Phys. Rev. Lett. 112 054302
|
[14] |
Schittny R, Kadic M, Guenneau S and Wegener M 2013 Phys. Rev. Lett. 110 195901
|
[15] |
Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S and Huang J P 2015 Phys. Rev. Lett. 115 195503
|
[16] |
Shen X Y, Li Y, Jiang C R and Huang J P 2016 Phys. Rev. Lett. 117 055501
|
[17] |
Yang T Z, Su Y S, Xu W K and Yang X D 2016 Appl. Phys. Lett. 109 120905-1
|
[18] |
Shen X Y, Y Li, Jiang C R, Ni Y S and Huang J P 2016 Appl. Phys. Lett. 109 031907
|
[19] |
Shen X Y, Jiang C R, Li Y and Huang J P 2016 Appl. Phys. Lett. 109 201906
|
[20] |
He X, Yang T Z, Zhang X W, Wu L Z and He X Q 2017 Sci. Rep. 7 16671
|
[21] |
Han T C, Bai X, Thong J T L, Li B W and Qiu C W 2014 Adv. Mater. 26 1731
|
[22] |
He X and Wu L Z 2013 Phys. Rev. E 88 033201
|
[23] |
Maire J, Anufriev R, Yanagisawa R, Ramiere A, Volz S and Nomura M 2017 Sci. Adv. 3 E1700027
|
[24] |
Hamed A and Ndao S 2018 Int. J. Heat Mass Transfer 121 10
|
[25] |
Shang J, Wang R Z, Xin C, Dai G L and Huang J P 2018 Int. J. Heat Mass Transfer 121 321
|
[26] |
Wang R Z, Xu L J, Ji Q and Huang J P 2018 J. Appl. Phys. 123 115117
|
[27] |
Li Y, Bai X, Yang T Z, Luo H L and Qiu C W 2018 Nat. Commun. 9 273
|
[28] |
He X, Yang T Z and Wu L Z 2018 J. Heat Transfer 140 102001
|
[29] |
Xu H Y, Shi X H, Gao F, Sun H D and Zhang B L 2014 Phys. Rev. Lett. 112 054301
|
[30] |
He X and Wu L Z 2014 Appl. Phys. Lett. 105 221904
|
[31] |
Dupont G, Guenneau S, Enoch S, Demesy G, Nicolet A, Zolla F and Diatta A 2009 Opt. Express 17 22603
|
[32] |
Chen T H, Yang F and Mei Z L 2015 Physica Status Solidi A 212 1746
|
[33] |
Wang R, Xu L J and Huang J P 2017 J. Appl. Phys. 122 215107
|
[34] |
Yang S, Xu L J, Wang R Z and Huang J P 2017 Appl. Phys. Lett. 111 121908
|
[35] |
Hou Q W, Zhao X P, Meng T and Liu C L 2016 Appl. Phys. Lett. 109 103506
|
[36] |
Zhou S L, Hu R and Luo X B 2018 Int. J. Heat Mass Transfer 127 607
|
[37] |
Hu R, Zhou S L, Li Y, Lei D Y, Luo X B and Qiu C W 2018 Adv. Mater. 30 1707237
|
[38] |
Xu L J and Huang J P 2018 Phys. Lett. A 382 3313
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|