Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 064403    DOI: 10.1088/1674-1056/28/6/064403
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Three-dimensional thermal illusion devices with arbitrary shape

Xingwei Zhang(张兴伟)1, Xiao He(何晓)1, Linzhi Wu(吴林志)1,2
1 Key Laboratory of Advanced Ship Materials and Mechanics, College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China;
2 Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China
Abstract  

Since the concept of invisible cloak was proposed by Pendry and Leonhardt in 2006, many researchers have applied the theory of coordinate transformation to thermodynamics and overcome the complexity of inhomogeneous and anisotropic of material parameters. However, only two-dimensional (2D) thermal illusion devices are researched recently. According to this situation, our study focuses on three-dimensional (3D) thermal illusion devices including shrinker (or invisible cloak), concentrator, amplifier, reshaper, and rotator with arbitrary shape in a general way. In this paper, the corresponding material parameters of thermal illusion devices mentioned above are derived based on the theory of transformation thermodynamics and the simulated results agree well with the theoretical derivations. In addition, the conventional invisible cloak just controls the temperature gradient rather than the temperature value which is more concerned in physical applications. Here, we find that the temperature value of the cloaked object can be controlled by adjusting the location of the original point of the coordinate system.

Keywords:  thermal illusion device      metamaterials      transformation thermaldynamics  
Received:  14 January 2019      Revised:  27 March 2019      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  07.05.Tp (Computer modeling and simulation)  
  05.70.-a (Thermodynamics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11702069) and the Fundamental Research Funds for the Central Universities, China (Grant No. HEUCFM180203).

Corresponding Authors:  Xiao He, Linzhi Wu     E-mail:  hit_hx@163.com;wulinzhi@hrbeu.edu.cn

Cite this article: 

Xingwei Zhang(张兴伟), Xiao He(何晓), Linzhi Wu(吴林志) Three-dimensional thermal illusion devices with arbitrary shape 2019 Chin. Phys. B 28 064403

[1] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2] Lax M and Nelson D F 1976 Phys. Rev. B 13 1777
[3] Shalaev V M 2008 Science 322 384
[4] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[5] Zhang S, Xia C G and Fang N 2011 Phys. Rev. Lett. 106 024301
[6] Popa B I, Zigoneanu L and Cummer S A 2011 Phys. Rev. Lett. 106 253901
[7] Brun M, Guenneau S and Movchan A B 2009 Appl. Phys. Lett. 94 061903
[8] Zhang S, Genov D A, Sun C and Zhang X 2008 Phys. Rev. Lett. 100 123002
[9] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
[10] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[11] Chen T Y, Weng C N and Chen J S 2008 Appl. Phys. Lett. 93 114103
[12] Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
[13] Han T C, Bai X, Gao D L, Thong J T L, Li B W and Qiu C W 2014 Phys. Rev. Lett. 112 054302
[14] Schittny R, Kadic M, Guenneau S and Wegener M 2013 Phys. Rev. Lett. 110 195901
[15] Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S and Huang J P 2015 Phys. Rev. Lett. 115 195503
[16] Shen X Y, Li Y, Jiang C R and Huang J P 2016 Phys. Rev. Lett. 117 055501
[17] Yang T Z, Su Y S, Xu W K and Yang X D 2016 Appl. Phys. Lett. 109 120905-1
[18] Shen X Y, Y Li, Jiang C R, Ni Y S and Huang J P 2016 Appl. Phys. Lett. 109 031907
[19] Shen X Y, Jiang C R, Li Y and Huang J P 2016 Appl. Phys. Lett. 109 201906
[20] He X, Yang T Z, Zhang X W, Wu L Z and He X Q 2017 Sci. Rep. 7 16671
[21] Han T C, Bai X, Thong J T L, Li B W and Qiu C W 2014 Adv. Mater. 26 1731
[22] He X and Wu L Z 2013 Phys. Rev. E 88 033201
[23] Maire J, Anufriev R, Yanagisawa R, Ramiere A, Volz S and Nomura M 2017 Sci. Adv. 3 E1700027
[24] Hamed A and Ndao S 2018 Int. J. Heat Mass Transfer 121 10
[25] Shang J, Wang R Z, Xin C, Dai G L and Huang J P 2018 Int. J. Heat Mass Transfer 121 321
[26] Wang R Z, Xu L J, Ji Q and Huang J P 2018 J. Appl. Phys. 123 115117
[27] Li Y, Bai X, Yang T Z, Luo H L and Qiu C W 2018 Nat. Commun. 9 273
[28] He X, Yang T Z and Wu L Z 2018 J. Heat Transfer 140 102001
[29] Xu H Y, Shi X H, Gao F, Sun H D and Zhang B L 2014 Phys. Rev. Lett. 112 054301
[30] He X and Wu L Z 2014 Appl. Phys. Lett. 105 221904
[31] Dupont G, Guenneau S, Enoch S, Demesy G, Nicolet A, Zolla F and Diatta A 2009 Opt. Express 17 22603
[32] Chen T H, Yang F and Mei Z L 2015 Physica Status Solidi A 212 1746
[33] Wang R, Xu L J and Huang J P 2017 J. Appl. Phys. 122 215107
[34] Yang S, Xu L J, Wang R Z and Huang J P 2017 Appl. Phys. Lett. 111 121908
[35] Hou Q W, Zhao X P, Meng T and Liu C L 2016 Appl. Phys. Lett. 109 103506
[36] Zhou S L, Hu R and Luo X B 2018 Int. J. Heat Mass Transfer 127 607
[37] Hu R, Zhou S L, Li Y, Lei D Y, Luo X B and Qiu C W 2018 Adv. Mater. 30 1707237
[38] Xu L J and Huang J P 2018 Phys. Lett. A 382 3313
[1] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[2] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[3] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[4] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[5] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[6] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[7] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[8] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[9] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[10] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[11] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[12] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[13] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[14] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[15] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
No Suggested Reading articles found!