Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 016101    DOI: 10.1088/1674-1056/ac6db5

Pressure-induced stable structures and physical properties of Sr-Ge system

Shuai Han(韩帅)1, Shuai Duan(段帅)1, Yun-Xian Liu(刘云仙)1,2,†, Chao Wang(王超)1,2, Xin Chen(陈欣)1,2, Hai-Rui Sun(孙海瑞)1,2, and Xiao-Bing Liu(刘晓兵)1,2,‡
1 Laboratory of High Pressure Physics and Material Science, School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
2 Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu 273165, China
Abstract  We have systematically investigated the structures of Sr-Ge system under pressures up to 200 GPa and found six stable stoichiometric structures, they being Sr$_{3}$Ge, Sr$_{2}$Ge, SrGe, SrGe$_{2}$, SrGe$_{3}$, and SrGe$_{4}$. We demonstrate the interesting structure evolution behaviors in Sr-Ge system with the increase of germanium content, Ge atoms arranging into isolated anions in Sr$_{3}$Ge, chains in Sr$_{2}$Ge, square units in SrGe, trigonal units and hexahedrons in SrGe$_{2}$, cages in SrGe$_{3}$, hexagons and Ge$_{8}$ rings in SrGe$_{4}$. The structural diversity produces various manifestations of electronic structures, which is of benefit to electrical transportation. Among them, these novel phases with metallic structures show superconductivity (maximum $T_{\rm c}\sim 8.94$ K for Pmmn Sr$_{3}$Ge). Notably, the n-type semiconducting Pnma SrGe$_{2}$ structure exhibits high Seebeck coefficient and excellent electrical conductivity along the $y$ direction, leading to a high $ZT$ value up to 1.55 at 500 K, which can be potential candidates as high-performance thermoelectrics. Our results will enable the development of fundamental science in condensed matter physics and potential applications in novel electronics or thermoelectric materials.
Keywords:  high pressure      first-principle calculation      germanium-strontium compounds      superconductivity      thermoelectric property  
Received:  24 March 2022      Revised:  19 April 2022      Accepted manuscript online:  07 May 2022
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  62.50.-p (High-pressure effects in solids and liquids) (First-principles theory)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52102335, 11704220, 11804184, 11974208, and 11804185) and the Shandong Provincial Natural Science Foundation, China (Grant Nos. ZR2021MA050, ZR2017BA020, ZR2018PA010, ZR2019MA054, and ZR2017BA012).
Corresponding Authors:  Yun-Xian Liu, Xiao-Bing Liu     E-mail:;

Cite this article: 

Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵) Pressure-induced stable structures and physical properties of Sr-Ge system 2023 Chin. Phys. B 32 016101

[1] Hao C M, Li Y, Huang H M and Li Y L 2018 J. Chem. Phys. 148 204706
[2] Shi J, Cui W, Flores-Livas J A, San-Miguel A, Botti S and Marques M A L 2016 Phys. Chem. Chem. Phys. 18 8108
[3] Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Y and Vedernikov M V 2006 Phys. Rev. B 74 045207
[4] Kumar M, Umezawa N and Imai M 2015 J. Alloys Compd. 630 126
[5] Fukuoka H, Suekuni K, Onimaru T and Inumaru K 2011 Inorg. Chem. 50 3901
[6] Fukuoka H and Yamanaka S 2003 Phys. Rev. B 67 094501
[7] Meier K, Cardoso-Gil R, Schnelle W, Rosner H, Burkhardt U and Schwarz U 2010 Z. Anorg. Allg. Chem. 636 1466
[8] Matthias B T, Corenzwit E and Zachariasen W H 1958 Phys. Rev. 112 89
[9] Wei M S, Sung H H and Lee W H 2005 Physica C 424 25
[10] Chung Y R, Sung H H and Lee W H 2004 Phys. Rev. B 70 052511
[11] Hübner J M, Bobnar M, Akselrud L, Prots Y, Grin Y and Schwarz U 2018 Inorg. Chem. 57 10295
[12] Castillo R, Baranov A I, Burkhardt U, Cardoso-Gil R, Schnelle W, Bobnar M and Schwarz U 2016 Inorg. Chem. 55 4498
[13] Wang C, Liu Y, Lv P, Sun H and Duan D 2018 Chem. Eur. J. 24 18757
[14] Nishikawa T, Fukuoka H and Inumaru K 2015 Inorg. Chem. 54 7433
[15] Iyo A, Hase I, Kawashima K, Ishida S, Kito H, Takeshita N, Oka K, Fujihisa H, Gotoh Y, Yoshida Y and Eisaki H 2017 Inorg. Chem. 56 8590
[16] Ud Din H, Reshak A H, Murtaza G, Amin B, Ali R, Alahmed Z A, Chysky J, Bila J and Kamarudin H 2015 Indian J. Phys. 89 369
[17] Evers J, Oehlinger G and Weiss A 1979 Z. Naturforsch B 34 524
[18] Hase I, Yanagisawa T, Iyo A, Eisaki H, Yoshida Y and Kawashima K 2018 J. Phys. Conf. Ser. 1054 012004
[19] Liu Y X, Wang C, Han S, Chen X, Sun H R and Liu X B 2021 Chin. Phys. Lett. 38 036201
[20] Wang C, Liu Y X, Chen X, Lv P, Sun H R and Liu X B 2020 Chin. Phys. Lett. 37 026201
[21] Chu B H, Zhao Y, Yan J L and Li D 2018 Chin. Phys. Lett. 35 016401
[22] Sun G L, Huang H M and Li Y L 2016 Chin. Phys. Lett. 33 026104
[23] Lu M, Huang Y, Tian F, Li D, Duan D, Zhou Q and Cui T 2020 Chin. Phys. B 29 053104
[24] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[25] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227
[26] Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172
[27] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[31] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[32] Dronskowski R and Bloechl P E 1993 J. Phys. Chem. 97 8617
[33] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[34] Bader R F W 1985 Acc. Chem. Res. 18 9
[35] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[36] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204
[37] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635
[38] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[39] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[40] Kumar M, Zhao H and Persson C 2013 Semicond. Sci. Technol. 28 065003
[41] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[42] Betz A, Schäfer H and Weiss A 1967 Z. Naturforsch B 22 103
[43] Ud Din H, Reshak A H, Murtaza G, Amin B, Ali R, Alahmed Z A, Chysky J, Bila J and Kamarudin H 2015 Indian J. Phys. 89 369
[44] Castillo R, Baranov A I, Burkhardt U, Grin Y and Schwarz U 2015 Z. Anorg. Allg. Chem. 641 355
[45] Fukuoka H, Tomomitsu Y and Inumaru K 2011 Inorg. Chem. 50 6372
[46] Zhang Y, Lin S, Zou M, Liu M, Xu M, Shen P, Hao J and Li Y 2021 Chin. Phys. Lett. 38 018101
[47] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[48] Lyu L, Yang Y, Cen W, Yao B and Ou J 2020 Mater. Res. Express. 7 126304
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[7] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[8] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[9] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[10] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[11] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[12] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
No Suggested Reading articles found!