Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴)1,2,#, Jie Zhang(张杰)1,2,#, Jierui Huang(黄杰瑞)1,2,#, Jinan Shi(时金安)1, Shuai Zhang(张帅)2, Hui Guo(郭辉)2, Li Huang(黄立)2, Hong Ding(丁洪)2,3,4, Wu Zhou(周武)1,3, Yan-Fang Zhang(张艳芳)1,†, Xiao Lin(林晓)1,3,‡, Shixuan Du(杜世萱)2,1,3,4,§, and Hong-Jun Gao(高鸿钧)2,1,3,4,¶
1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 2 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 CAS Center for Excellent in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract Two-dimensional honeycomb lattices show great potential in the realization of Dirac nodal line fermions (DNLFs). Here, we successfully synthesized a gold telluride (AuTe) monolayer by direct tellurizing an Au(111) substrate. Low energy electron diffraction measurements reveal that it is (2×2) AuTe layer stacked onto (3×3) Au(111) substrate. Moreover, scanning tunneling microscopy images show that the AuTe layer has a honeycomb structure. Scanning transmission electron microscopy reveals that it is a single-atom layer. In addition, first-principles calculations demonstrate that the honeycomb AuTe monolayer exhibits Dirac nodal line features protected by mirror symmetry, which is validated by angle-resolved photoemission spectra. Our results establish that monolayer AuTe can be a good candidate to investigate 2D DNLFs and provides opportunities to realize high-speed low-dissipation devices.
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61925111, 61888102, and 52102193), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB28000000 and XDB30000000), CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003), and the Fundamental Research Funds for the Central Universities.
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧) Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions 2023 Chin. Phys. B 32 016102
[1] Huang D, Choi J, Shih C K and Li X Q 2022 Nat. Nanotechnol.17 227 [2] Wilson N P, Yao W, Shan J and Xu X D 2021 Nature599 383 [3] Du Z G, Yang S B, Li S M, Lou J, Zhang S Q, Wang S, Li B, Gong Y J, Song L, Zou X L and Ajayan P M 2020 Nature577 492 [4] Rhodes D, Chae S H, Ribeiro-Palau R and Hone J 2019 Nat. Mater.18 541 [5] Nazif K N, Kumar A, Hong J H, Lee N, Islam R, McClellan C J, Karni O, van de Groep J, Heinz T F, Pop E, Brongersma M L and Saraswat K C 2021 Nano Lett.21 3443 [6] Kim H, Uddin S Z, Higashitarumizu N, Rabani E and Javey A 2021 Science373 448 [7] Xia Y, Berry J and Haataja M P 2021 Nano Lett.21 4676 [8] Zhang F, Zhang H R, Krylyuk S, Milligan C A, Zhu Y Q, Zemlyanov D Y, Bendersky L A, Burton B P, Davydov A V and Appenzeller J 2019 Nat. Mater.18 55 [9] Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T and Liu Z 2018 Nature556 355 [10] Luo Z Y, Zheng W H, Luo N N, Liu B, Zheng B Y, Yang X, Liang D L, Qu J Y, Liu H W, Chen Y, Jiang Y, Chen S L, Zou X L and Pan A L 2022 Nano Lett.22 2112 [11] Nayak A K, Steinbok A, Roet Y, Koo J, Margalit G, Feldman I, Almoalem A, Kanigel A, Fiete G A, Yan B H, Oreg Y, Avraham N and Beidenkopf H 2021 Nat. Phys.17 1413 [12] Xing Y, Yang P, Ge J, Yan J J, Luo J W, Ji H R, Yang Z Y, Li Y J, Wang Z J, Liu Y Z, Yang F, Qiu P, Xi C Y, Tian M L, Liu Y, Lin X and Wang J 2021 Nano Lett.21 7486 [13] Seo S Y, Yang D H, Moon G, Okello O F N, Park M Y, Lee S H, Choi S Y and Jo M H 2021 Nano Lett.21 3341 [14] Wen W, Dang C and Xie L 2019 Chin. Phys. B28 058504 [15] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett.105 136805 [16] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol.6 147 [17] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S X and Gao H J 2018 Adv. Mater.30 1707055 [18] Dong L, Wang A W, Li E, Wang Q, Li G, Huan Q and Gao H J 2019 Chin. Phys. Lett.36 028102 [19] Liu B, Liu J, Miao G Y, Xue S W, Zhang S Y, Liu L X, Huang X C, Zhu X T, Meng S, Guo J D, Liu M and Wang W H 2019 J. Phys. Chem. Lett.10 1866 [20] Lu J C, Gao L, Song S R, Li H, Niu G F, Chen H, Qian T, Ding H, Lin X, Du S X and Gao H J 2021 ACS Appl. Nano Mater.4 8845 [21] Wu X X, Liu X, Thomale R and Liu C X 2022 Natl. Sci. Rev.9 087 [22] Wang S Y, Bai X W, Li Q, Ouyang Y X, Shi L and Wang J L 2021 Nanoscale Horiz.6 661 [23] Gao L, Zhang Y F and Du S X 2021 Nano Res.14 2826 [24] Ma Y, Kou L, Dai Y and Heine T 2016 Phys. Rev. B93 235451 [25] Chen X, Esteban-Puyuelo R, Li L and Sanyal B 2021 Phys. Rev. B103 075429 [26] Shao D F, Gurung G, Zhang S H and Tsymbal E Y 2019 Phys. Rev. Lett.122 077203 [27] Rui W B, Zhao Y X and Schnyder A P 2018 Phys. Rev. B97 161113 [28] Sun Y, Zhang Y, Liu C X, Felser C and Yan B 2017 Phys. Rev. B95 235104 [29] Zhang L, Dong Z, Wang L, Hu Y, Guo C, Guo L, Chen Y, Han L, Zhang K, Tian S, Yao C, Chen Z, Cai M, Jiang M, Xing H, Yu X, Chen X, Zhang K and Lu W 2021 Adv. Sci. (Weinh)8 2102088 [30] Jovic V, Consiglio A, Smith K E, Jozwiak C, Bostwick A, Rotenberg E, Di Sante D and Moser S 2021 ACS Catal.11 1749 [31] Tian M, Wang J, Liu X, Chen W, Liu Z, Du H, Ma X, Cui X, Zhao A, Shi Q, Wang Z, Luo Y, Yang J, Wang B and Hou J G 2020 Nano Lett.20 2157 [32] Liu J, Liu P, Gordon K, Emmanouilidou E, Xing J, Graf D, Chakoumakos B C, Wu Y, Cao H, Dessau D, Liu Q and Ni N 2019 Phys. Rev. B100 195123 [33] Chi S, Liang F, Chen H, Tian W, Zhang H, Yu H, Wang G, Lin Z, Hu J and Zhang H 2020 Adv. Mater.32 1904498 [34] Ishizaka S, Ino A, Kono T, Miyai Y, Kumar S, Shimada K, Kitô H, Hase I, Ishida S, Oka K, Fujihisa H, Gotoh Y, Yoshida Y, Iyo A, Ogino H, Eisaki H, Kawashima K, Yanagi Y and Kimura A 2022 Phys. Rev. B 105 L121103 [35] Chen H, Zhang S, Jiang W, Zhang C, Guo H, Liu Z, Wang Z, Liu F and Niu X 2018 J. Mater. Chem. A6 11252 [36] Yang B, Zhang X and Zhao M 2017 Nanoscale9 8740 [37] Zhou P, Ma Z S and Sun L Z 2018 J. Mater. Chem. C6 1206 [38] Zhang R W, Liu C C, Ma D S and Yao Y 2018 Phys. Rev. B97 125312 [39] Feng B J, Fu B T, Kasamatsu S, Ito S, Cheng P, Liu C C, Feng Y, Wu S L, Mahatha S K, Sheverdyaeva P, Moras P, Arita M, Sugino O, Chiang T C, Shimada K, Miyamoto K, Okuda T, Wu K H, Chen L, Yao Y G and Matsuda I 2017 Nat. Commun.8 1007 [40] Cui X X, Li Y F, Guo D P, Guo P J, Lou C C, Mei G Q, Lin C, Tan S J, Liu Z X, Liu K, Lu Z Y, Petek H, Cao L M, Ji W and Feng M 2020 arXiv e-prints 2012.15220 [41] Olsen T, Andersen E, Okugawa T, Torelli D, Deilmann T and Thygesen K S 2019 Phys. Rev. Mater.3 024005 [42] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H and Fang C 2019 Nature566 475 [43] Cheng L J, Wang M, Pei C J, Liu B, Zhao H, Zhao H, Zhang C J, Yang H Q and Liu S Z 2016 RSC Adv.6 79612 [44] Qian K, Gao L, Li H, Zhang S, Yan J H, Liu C, Wang J O, Qian T, Ding H, Zhang Y Y, Lin X, Du S X and Gao H J 2020 Chin. Phys. B29 018104 [45] Wang H L, Zuo P F, Wang A M, Zhang S Y, Mao C J, Song J M, Niu H L, Jin B K and Tian Y P 2013 J. Alloys Comp.581 816 [46] Zhu Z L, Liu Z L, Wu X, Li X Y, Shi J A, Liu C, Qian G J, Zheng Q, Huang L, Lin X, Wang J O, Chen H, Zhou W, Sun J T, Wang Y L and Gao H J 2022 Chin. Phys. B31 077101 [47] Sobota J A, He Y and Shen Z X 2021 Rev. Mod. Phys.93 025006 [48] Rienks E D, Arrala M, Lindroos M, Roth F, Tabis W, Yu G, Greven M and Fink J 2014 Phys. Rev. Lett.113 137001 [49] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [50] Kresse G and Furthmüller J 1996 Comput. Mater. Sci.6 15 [51] Blochl P E 1994 Phys. Rev. B50 17953 [52] Ceperley D M and Alder B J 1980 Phys. Rev. Lett.45 566 [53] Perdew J P and Zunger A 1981 Phys. Rev. B23 5048 [54] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B83 195131 [55] Klimeš J, Bowler D R and Michaelides A 2010 J. Phys. Condens. Matter.22 022201 [56] Tersoff J and Hamann D R 1985 Phys. Rev. B31 805
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.