Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 015202    DOI: 10.1088/1674-1056/ac8e95
DATA PAPER Prev   Next  

Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas

Zhencen He(何贞岑)1,2, Jiyan Zhang(张继彦)3, Jiamin Yang(杨家敏)3, Bing Yan(闫冰)4,†, and Zhimin Hu(胡智民)1,‡
1 Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2 Institute of Modern Physics, Key Laboratory of Nuclear Physics and Ion-Beam Application(MOE), Fudan University, Shanghai 200433, China;
3 Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;
4 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  A study of a nanosecond laser irradiation on the titanium-layer-buried gold planar target is presented. The time-resolved x-ray emission spectra of titanium tracer are measured by a streaked crystal spectrometer. By comparing the simulated spectra obtained by using the FLYCHK code with the measured titanium spectra, the temporal plasma states, i.e., the electron temperatures and densities, are deduced. To evaluate the feasibility of using the method for the characterization of Au plasma states, the deduced plasma states from the measured titanium spectra are compared with the Multi-1D hydrodynamic simulations of laser-produced Au plasmas. By comparing the measured and simulated results, an overall agreement for the electron temperatures is found, whereas there are deviations in the electron densities. The experiment-theory discrepancy may suggest that the plasma state could not be well reproduced by the Multi-1D hydrodynamic simulation, in which the radial gradient is not taken into account. Further investigations on the spectral characterization and hydrodynamic simulations of the plasma states are needed. All the measured and FLYCHK simulated spectra are given in this paper as datasets. The datasets are openly available at http://www.doi.org/10.57760/sciencedb.j00113.00032.
Keywords:  nanosecond laser irradiation      time-resolved x-ray spectra      characterization of plasma states      Multi-1D hydrodynamic simulations  
Received:  07 June 2022      Revised:  03 August 2022      Accepted manuscript online:  02 September 2022
PACS:  52.38.Mf (Laser ablation)  
  29.30.-h (Spectrometers and spectroscopic techniques)  
  52.38.-r (Laser-plasma interactions)  
  24.10.Nz (Hydrodynamic models)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403300), the National Natural Science Foundation of China (Grant Nos. 12074352 and 11675158), and the Fundamental Research Funds for the Central Universities in China (Grant No. YJ202144).
Corresponding Authors:  Bing Yan, Zhimin Hu     E-mail:  yanbing@jlu.edu.cn;huzhimin@scu.edu.cn

Cite this article: 

Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民) Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas 2023 Chin. Phys. B 32 015202

[1] Lindl J 1995 Phys. Plasmas 2 3933
[2] Wang L F, Wu J F, Ye W H, Fan Z F and He X T 2014 Chin. Phys. Lett. 31 045201
[3] Moore A S, Meezan N B, Thomas C A, et al. 2020 Phys. Plasmas 27 082706
[4] Liu H J, Gu Y Q, Zhou W M, Yu J Q, Zhu B, Wu Y C, Shan L Q, Wen X L, Li F, Qian F, Cao L F, Zhang B H and Zheng Z J 2012 Chin. Phys. B 21 055207
[5] Song W, Hu R H, Shou Y R, Gong Z, Yu J Q, Lin C, Ma W J, Zhao Y Y, Lu H Y and Yan X Q 2017 Chin. Phys. Lett. 34 085201
[6] Bakhiet M, Su M G, Cao S Q, Min Q, Sun D X, He S Q, Wu L and Dong C Z 2020 Chin. Phys. B 29 075203
[7] Li Q X, Zhang D, Jiang Y F, Li S Y, Chen A M and Jin M X 2022 Chin. Phys. B 31 085201
[8] Glenzer S H, Back C A, Suter L J, Blain M A, Landen O L, Lindl J D, MacGowan B J, Stone G F, Turner R E and Wilde B H 1997 Phys. Rev. Lett. 79 1277
[9] Ross J S, Glenzer S H, Palastro J P, Pollock B B, Price D, Divol L, Tynan G R and Froula D H 2010 Phys. Rev. Lett. 104 105001
[10] Jiang C F F, Zheng J and Zhao B 2011 Chin. Phys. B 20 095202
[11] Glenzer S H, Fournier K B, Wilson B G, Lee R W and Suter L J 2001 Phys. Rev. Lett. 87 045002
[12] Jones O S, Glenzer S H, Suter L J, Turner R E, Campbell K M, Dewald E L, Hammel B A, Hammer J H, Kauffman R L, Landen O L, Rosen M D, Wallace R J and Weber F A 2004 Phys. Rev. Lett. 93 065002
[13] Jones O S, Schein J, Rosen M D, et al. 2007 Phys. Plasmas 14 056311
[14] Dewald E L, Rosen M, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon F, Huser G, Neumayer P and Landen O L 2008 Phys. Plasmas 15 072706
[15] Shepard T D, Back C A, Kalantar D H, Kauffman R L, Keane C J, Klem D E, Lasinski B F, MacGowan B J, Powers L V, Suter L J, Turner R E, Failor B H and Hsing W W 1996 Phys. Rev. E 53 5291
[16] Back C A, Kalantar D H, Kauffman R L, Lee R W, MacGowan B J, Montgomery D S, Powers L V, Shepard T D, Stone G F and Suter L J 1996 Phys. Rev. Lett. 77 4350
[17] Glenzer S H, Rosmej F B, Lee R W, Back C A, Estabrook K G, MacGowan B J, Shepard T D and Turner R E 1998 Phys. Rev. Lett. 81 365
[18] May M, Schneider M, Hansen S, Chung H K, Hinkel D, Baldis H and Constantin C 2008 High Energ. Dens. Phys. 4 78
[19] Zheng W, Wei X, Zhu Q, et al. 2017 Matter Radiat. Extremes 2 243
[20] Chung H K, Chen M, Morgan W, Ralchenko Y and Lee R 2005 High Energ. Dens. Phys. 1 3
[21] Ramis R, Schmalz R and Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475
[22] Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2021 NIST Atomic Spectra Database (ver. 5.9)
[23] Yang Z H, Zhang Z Y, Lv M, Hu Z M, An Z, Wei M X, Zhao Y and Yang J M 2021 Meas. Sci. Technol. 32 047001
[24] Dittrich T R, Hammel B A, Keane C J, McEachern R, Turner R E, Haan S W and Suter L J 1994 Phys. Rev. Lett. 73 2324
[25] Barrios M A, Liedahl D A, Schneider M B, et al. 2016 Phys. Plasmas 23 056307
[26] Benuzzi-Mounaix A, Loupias B, Koenig M, et al. 2008 Phys. Rev. E 77 045402
[27] Regan S P, Epstein R, Hammel B A, et al. 2013 Phys. Rev. Lett. 111 045001
[28] Eidmann K 1994 Laser Part. Beams 12 223
[29] Hoarty D J, Sircombe N, Beiersdorfer P,et al. 2017 High Energ. Dens. Phys. 23 178
[30] Hoarty D J, Hill E, Beiersdorfer P, et al. 2017 AIP Conf. Proc. 1811 050001
[1] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[2] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[3] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[4] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[5] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[6] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[7] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[8] A simple analytical model of laser direct-drive thin shell target implosion
Bo Yu(余波), Tianxuan Huang(黄天晅), Li Yao(姚立), Chuankui Sun(孙传奎), Wanli Shang(尚万里), Peng Wang(王鹏), Xiaoshi Peng(彭晓世), Qi Tang(唐琦), Zifeng Song(宋仔峰), Wei Jiang(蒋炜), Zhongjing Chen(陈忠靖), Yudong Pu(蒲昱东), Ji Yan(晏骥), Yunsong Dong(董云松), Jiamin Yang(杨家敏), Yongkun Ding(丁永坤), and Jian Zheng(郑坚). Chin. Phys. B, 2022, 31(4): 045204.
[9] A low-cost invasive microwave ablation antenna with a directional heating pattern
Zhang Wen(文章), Xian-Qi Lin(林先其), Chen-Nan Li(李晨楠), and Yu-Lu Fan(樊钰璐). Chin. Phys. B, 2022, 31(3): 038401.
[10] Micro-pinch formation and extreme ultraviolet emission of laser-induced discharge plasma
Jun-Wu Wang(王均武), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗), and Vassily S. Zakharov. Chin. Phys. B, 2021, 30(9): 095207.
[11] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[12] Analysis of extreme ultraviolet spectra of laser-produced Cd plasmas
Mohammedelnazier Bakhiet, Maogen Su(苏茂根), Shiquan Cao(曹世权), Qi Min(敏琦), Duixiong Sun(孙对兄), Siqi He(何思奇), Lei Wu(吴磊), Chenzhong Dong(董晨钟). Chin. Phys. B, 2020, 29(7): 075203.
[13] Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy
Lan Yang(杨岚), Miao Liu(刘淼), Yi-Tong Liu(刘奕彤), Qing-Xue Li(李庆雪), Su-Yu Li(李苏宇), Yuan-Fei Jiang(姜远飞), An-Min Chen(陈安民), Ming-Xing Jin(金明星). Chin. Phys. B, 2020, 29(6): 065203.
[14] Analysis of extreme ultraviolet spectral profiles of laser-produced Cr plasmas
L Wu(吴磊), M G Su(苏茂根), Q Min(敏琦), S Q Cao(曹世权), S Q He(何思奇), D X Sun(孙对兄), C Z Dong(董晨钟). Chin. Phys. B, 2019, 28(7): 075201.
[15] Factors affecting improvement of fluorescence intensity of quartet and doublet state of NO diatomic molecule excited by glow discharge
Ahmed Asaad I Khalil, Reem Al-Tuwirqi, Mohammed A Gondal, Noura Al-Suliman. Chin. Phys. B, 2018, 27(8): 085202.
No Suggested Reading articles found!