Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097403    DOI: 10.1088/1674-1056/ac76ae
RAPID COMMUNICATION Prev   Next  

Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5

Qiang-Tao Sui(随强涛)1,2 and Xiang-Gang Qui(邱祥冈)1,2,3,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Modulated electronic state due to the layered crystal structures brings about moderate anisotropy of superconductivity in the iron-based superconductors and thus Abrikosov vortices are expected in the mixed state. However, based on the angular and temperature dependent transport measurements in iron-based superconductor Ca$_{10}$(Pt$_3$As$_8$)((Fe$_{0.9}$Pt$_{0.1}$)$_2$As$_2$)$_5$ with $T_{\rm c} \simeq 12$ K, we find clear evidences of a crossover from Abrikosov vortices to Josephson vortices at a crossover temperature $T^{\star} \simeq 7 $ K, when the applied magnetic field is parallel to the superconducting FeAs layers, i.e., the angle between the magnetic field and the FeAs layers $\theta = 0^\circ$. This crossover to Josephson vortices is demonstrated by an abnormal decrease (increase) of the critical current (flux-flow resistance) below $T^{\star}$, in contrast to the increase (decrease) of the critical current (flux-flow resistance) above $T^{\star}$ expected for Abrikosov vortices. Furthermore, when $\theta$ is larger than $0.5^\circ$, the flux-flow resistance and critical current have no anomalous behaviors across $T^{\star}$. These anomalous behaviors can be understood in terms of the distinct transition from the well-pinned Abrikosov vortices to the weakly-pinned Josephson vortices upon cooling, when the coherent length perpendicular to the FeAs layers $\xi_\bot$ becomes shorter than half of the interlayer distance $d/2$. These experimental findings indicate the existence of intrinsic Josephson junctions below $T^{\star}$ and thus quasi-two-dimensional superconductivity in Ca$_{10}$(Pt$_3$As$_8$)((Fe$_{0.9}$Pt$_{0.1}$)$_2$As$_2$)$_5$, similar to those in the cuprate superconductors.
Keywords:  iron-based superconductor      Abrikosov vortices      Josephson vortices      intrinsic Josephson junctions  
Received:  12 May 2022      Revised:  31 May 2022      Accepted manuscript online:  08 June 2022
PACS:  74.70.Dd (Ternary, quaternary, and multinary compounds)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.81.Fa (Josephson junction arrays and wire networks)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0302903) and the National Natural Science Foundation of China (Grant No. 11974412).
Corresponding Authors:  Xiang-Gang Qui     E-mail:  xgqiu@iphy.ac.cn

Cite this article: 

Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈) Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5 2022 Chin. Phys. B 31 097403

[1] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[2] Place A P M, Rodgers L V H, Mundada P, et al. 2021 Nat. Commun. 12 1779
[3] Wu Y L, Bao W S, Cao S R, et al. 2021 Phys. Rev. Lett. 127 180501
[4] Ball P 2021 Nature 599 542
[5] Walsh Evan D, Jung W, Lee G, Efetov Dmitri K, Wu B, Huang K F, Ohki Thomas, A, Taniguchi T, Watanabe K, Kim P, Englund D and Fong Kin C 2021 Science 372 409
[6] Cassidy M C, Bruno A, Rubbert S, Irfan M, Kammhuber J, Schouten R N, Akhmerov A R and Kouwenhoven L P 2017 Science 355 939
[7] Kleiner R, Steinmeyer F, Kunkel G and Müller P 1992 Phys. Rev. Lett. 68 2394
[8] Rapp M, Murk A, Semerad R and Prusseit W 1996 Phys. Rev. Lett. 77 928
[9] Inomata K, Sato S, Nakajima K, Tanaka A, Takano Y, Wang H B, Nagao M, Hatano H and Kawabata S 2005 Phys. Rev. Lett. 95 107005
[10] Jin X Y, Lisenfeld J, Koval Y, Lukashenko A, Ustinov A V and Müller P 2006 Phys. Rev. Lett. 96 177003
[11] Li S X, Qiu W, Han S, Wei Y F, Zhu X B, Gu C Z, Zhao S P and Wang H B 2007 Phys. Rev. Lett. 99 037002
[12] Kawae T, Nagao M, Takano Y, Wang H, Hatano T, Kim S and Yamashita T 2005 Supercond. Sci. Technol. 18 1159
[13] Kubo Y, Tanaka T, Takahide Y, Ueda S, Okutsu T, Islam A T M N, Tanaka I and Takano Y 2008 Phys. C 468 1922
[14] Wang H B, Wu P H and Yamashita T 2001 Phys. Rev. Lett. 87 107002
[15] Wei Y F, Zhao S P, Zhu X B, Chen G H, Ren Y F, Yu H W, Yang Q S and Hu Y 2005 Chin. Phys. Lett. 22 2051
[16] Zhu X B, Wei Y F, Zhao S P, Chen G H and Yang Q S 2004 Chin. Phys. 13 529
[17] Ozyuzer L, Koshelev A E, Kurter C, Gopalsami N, Li Q, Tachiki M, Kadowaki K, Yamamoto T, Minami H, Yamaguchi H, Tachiki T, Gray KE, Kwok W K and Welp U 2007 Science 318 1291
[18] Borodianskyi E A and Krasnov V M 2017 Nat. Commun. 8 1742
[19] Farrell D E, Rice J P, Ginsberg D M and Liu J Z 1990 Phys. Rev. Lett. 64 1573
[20] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[21] Matsuishi S, Inoue Y, Nomura T, Yanagi H, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 14428
[22] Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761
[23] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Cai Z, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[24] Raghu S, Qi X L, Liu C X, Scalapino D J and Zhang S C 2008 Phys. Rev. B 77 220503
[25] Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H and Aoki H 2008 Phys. Rev. Lett. 101 087004
[26] Lee P A and Wen X G 2008 Phys. Rev. B 78 144517
[27] Ma F J, Lu Z Y and Xiang T 2008 Phys. Rev. B 78 224517
[28] Ma F J, Lu Z Y and Xiang T 2010 Frontiers of Physics in China 5 150
[29] Hechtfischer G, Kleiner R, Schlenga K, Walkenhorst W, Müller P and Johnson H L 1997 Phys. Rev. B 55 14638
[30] Kadowaki K, Kakeya I, Yamamoto T, Yamazaki T, Kohri M and Kubo Y 2006 Phys. C 437-438 111
[31] van der Beek C J, Rizza G, Konczykowski M, Fertey P, Monnet I, Klein T, Okazaki R, Ishikado M, Kito H, Iyo A, Eisaki H, Shamoto S, Tillman M E, Bud'ko SL, Canfield P C, Shibauchi T and Matsuda Y 2010 Phys. Rev. B 81 174517
[32] Yamamoto A, Jaroszynski J, Tarantini C, Balicas L, Jiang J, Gurevich A, Larbalestier D C, Jin R, Sefat A S, McGuire M A, Sales B C, Christen D K and Mandrus D 2009 Appl. Phys. Lett. 94 062511
[33] Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
[34] Moll P J W, Balicas L, Geshkenbein V, Blatter G, Karpinski J, Zhigadlo N D and Batlogg B 2012 Nat. Mater. 12 134
[35] Moll P J W, Zhu X, Cheng P, Wen H H and Batlogg B 2014 Nat. Phys. 10 644
[36] Li G, Grissonnanche G, Conner B S, Wolff-Fabris F, Putzke C, Zhigadlo N D, Katrych S, Bukowski Z, Karpinski J and Balicas L 2013 Phys. Rev. B 87 100503
[37] Ni N, Allred J M, Chan B C and Cava R J 2011 Proc. Natl. Acad. Sci. USA 108 E1019
[38] Kakiya S, Kudo K, Nishikubo Y, Oku K, Nishibori E, Sawa H, Yamamoto T, Nozaka T, Nohara M 2011 J. Phys. Soc. Jpn. 80 093704
[39] Moll P J W, Puzniak R, Balakirev F, Rogacki K, Karpinski J, Zhigadlo N D and Batlogg B 2010 Nat. Mater. 9 628
[40] Stürzer T, Derondeau G and Johrendt D 2012 Phys. Rev. B 86 060516
[41] Sakai S, Bodin P and Pedersen N F 1993 J. Appl. Phys. 73 2411
[42] Kleiner R, Müller P, Kohlstedt H, Pedersen N F and Sakai S 1994 Phys. Rev. B 50 3942
[43] Tinkham M 2004 Introduction to Superconductivity, Dover edn. (New York:Dover Publications) pp. 215-220
[44] Kim J, Ronning F, Haberkorn N, Civale L, Nazaretski E, Ni N, Cava R J, Thompson J D and Movshovich R 2012 Phys. Rev. B 85 180504
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[3] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[4] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[5] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[6] Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2
Tao Xie(谢涛), Chang Liu(刘畅), Tom Fennell, Uwe Stuhr, Shi-Liang Li(李世亮), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2021, 30(12): 127402.
[7] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
[8] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[9] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[10] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[11] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡. Chin. Phys. B, 2020, 29(10): 107402.
[12] Nonlinear uniaxial pressure dependence of the resistivity in Sr1-xBaxFe1.97Ni0.03As2
Hui-Can Mao(毛慧灿), Dong-Liang Gong(龚冬良), Xiao-Yan Ma(马肖燕), Hui-Qian Luo(罗会仟), Yi-Feng Yang(杨义峰), Lei Shan(单磊), Shi-Liang Li(李世亮). Chin. Phys. B, 2018, 27(8): 087402.
[13] Electronic structure and nematic phase transition in superconducting multiple-layer FeSe films grown by pulsed laser deposition method
Bing Shen(沈兵), Zhong-Pei Feng(冯中沛), Jian-Wei Huang(黄建伟), Yong Hu(胡勇), Qiang Gao(高强), Cong Li(李聪), Yu Xu(徐煜), Guo-Dong Liu(刘国东), Li Yu(俞理), Lin Zhao(赵林), Kui Jin(金魁), X J Zhou(周兴江). Chin. Phys. B, 2017, 26(7): 077402.
[14] Transition from tunneling regime to local point contact realized on Ba0.6K0.4Fe2As2 surface
Xingyuan Hou(侯兴元), Yunyin Jie(揭云印), Jing Gong(巩靖), Bing Shen(沈冰), Hai Zi(子海), Chunhong Li(李春红), Cong Ren(任聪), Lei Shan(单磊). Chin. Phys. B, 2017, 26(6): 067402.
[15] Comparison of band structure and superconductivity in FeSe0.5Te0.5 and FeS
Yang Yang(杨阳), Shi-Quan Feng(冯世全), Yuan-Yuan Xiang(向圆圆), Hong-Yan Lu(路洪艳), Wan-Sheng Wang(王万胜). Chin. Phys. B, 2017, 26(12): 127401.
No Suggested Reading articles found!