Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127401    DOI: 10.1088/1674-1056/26/12/127401

Comparison of band structure and superconductivity in FeSe0.5Te0.5 and FeS

Yang Yang(杨阳)1, Shi-Quan Feng(冯世全)1, Yuan-Yuan Xiang(向圆圆)2, Hong-Yan Lu(路洪艳)3, Wan-Sheng Wang(王万胜)4
1. College of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
2. College of Science, Hohai University, Nanjing 210098, China;
3. School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China;
4. Department of Physics, Ningbo University, Ningbo 315211, China
Abstract  The isovalent iron chalcogenides, FeSe0.5Te0.5 and FeS, share similar lattice structures but behave very differently in superconducting properties. We study the underlying mechanism theoretically. By first principle calculations and tight-binding fitting, we find the spectral weight of the dX2-Y2 orbital changes remarkably in these compounds. While there are both electron and hole pockets in FeSe0.5Te0.5 and FeS, a small hole pocket with a mainly dX2-Y2 character is absent in FeS. We find the spectral weights of dX2-Y2 orbital change remarkably, which contribute to electron and hole pockets in FeSe0.5Te0.5 but only to electron pockets in FeS. We then perform random-phase-approximation and unbiased singular-mode functional renormalization group calculations to investigate possible superconducting instabilities that may be triggered by electron-electron interactions on top of such bare band structures. For FeSe0.5Te0.5, we find a fully gapped s±-wave pairing that can be associated with spin fluctuations connecting electron and hole pockets. For FeS, however, a nodal dxy (or dx2-y2 in an unfolded Broullin zone) is favorable and can be related to spin fluctuations connecting the electron pockets around the corner of the Brillouin zone. Apart from the difference in chacogenide elements, we propose the main source of the difference is from the dX2-Y2 orbital, which tunes the Fermi surface nesting vector and then influences the dominant pairing symmetry.
Keywords:  iron-based superconductors      theories and models of superconducting state      pairing symmetry  
Received:  14 June 2017      Revised:  13 July 2017      Accepted manuscript online: 
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.20.Pq (Electronic structure calculations)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11604303, 11604168, and 11574108).
Corresponding Authors:  Wan-Sheng Wang     E-mail:

Cite this article: 

Yang Yang(杨阳), Shi-Quan Feng(冯世全), Yuan-Yuan Xiang(向圆圆), Hong-Yan Lu(路洪艳), Wan-Sheng Wang(王万胜) Comparison of band structure and superconductivity in FeSe0.5Te0.5 and FeS 2017 Chin. Phys. B 26 127401

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Huang H H, Wu C J, Ma X C, Chen X and Xue Q K 2011 Science 332 1410
[3] Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, L?hneysen H v, Shibauchi T and Matsuda Y 2014 Proc. Natl. Acad. Sci. USA 111 16309
[4] Dong J K, Guan T Y, Zhou S Y, Qiu X, Ding L, Zhang C, Patel U, Xiao Z L and Li S Y 2009 Phys. Rev. B 80 024518
[5] Lin J Y, Hsieh Y S, Chareev D A, Vasiliev A N, Parsons Y and Yang H D 2011 Phys. Rev. B 84 220507
[6] Hanaguri T, Niitaka S, Kuroki K and Takagi H 2010 Science 328 474
[7] Miao H, Richard P, Tanaka Y, Nakayama K, Qian T, Umezawa K, Sato T, Xu Y M, Shi Y B, Xu N, Wang X P, Zhang P, Yang H B, Xu Z J, Wen J S, Gu G D, Dai X, Hu J P, Takahashi T and Ding H 2012 Phys. Rev. B 85 094506
[8] Okazaki K, Ito Y, Ota Y, Kotani Y, Shimojima T, Kiss T, Watanabe S, Chen C T, Niitaka S, Hanaguri T, Takagi H, Chainani A and Shin S 2012 Phys. Rev. Lett. 109 237011
[9] Lai X, Zhang H, Wang Y, Wang X, Zhang X, Lin J and Huang F 2015 J. Am. Chem. Soc. 137 10148
[10] Ying T, Lai X, Hong X, Xu Y, He L, Zhang J, Wang M, Yu Y, Huang F and Li S 2016 Phys. Rev. B 94 100504
[11] Xing J, Lin H, Li Y, Li S, Zhu X, Yang H and Wen H H 2016 Phys. Rev. B 93 104520
[12] Yang Y, Wang W S, Lu H Y, Xiang Y Y and Wang Q H 2016 Phys. Rev. B 93 104514
[13] Kuroki K, Usui H, Onari S, Arita R and Aoki H 2009 Phys. Rev. B 79 224511
[14] Louca D, Horigane K, Llobet A, Arita R, Ji S, Katayama N, Konbu S, Nakamura K, Koo T Y, Tong P and Yamada K 2010 Phys. Rev. B 81 134524
[15] Ciechan A, Winiarski M J and Czekala M S 2012 Acta Physica Polonica A 121 820
[16] Ciechan A, Winiarski M J and Czekala M S 2013 Intermetallics 41 44
[17] Giannozzi P, et al. 2009 J. Phys.:Condens. Matter 21 395502
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Miyake T, Nakamura K, Arita R and Imada M 2010 J. Phys. Soc. Jpn. 79 044705
[20] Chen F, Zhou B, Zhang Y, Wei J, Ou H W, Zhao J F, He C, Ge Q Q, Arita M, Shimada K, Namatame H, Taniguchi M, Lu Z Y, Hu J, Cui X Y and Feng D L 2010 Phys. Rev. B 81 014526
[21] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[22] Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
[23] Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H and Aoki H 2008 Phys. Rev. Lett. 101 087004
[24] Böhm T, Kretzschmar F, Baum A, Rehm M, Jost D, Ahangharnejhad R H, Thomale R, Platt C, Maier T A, Hanke W, Moritz B, Devereaux T P, Scalapino D J, Maiti S, Hirschfeld P J, Adelmann P, Wolf T, Wen H H and Hackl R 2015 arXiv:1703, 07749[cond-mat.supr-con]
[25] Wang W S, Xiang Y Y, Wang Q H, Wang F, Yang F and Lee D H 2012 Phys. Rev. B 85 035414
[26] Xiang Y Y, Wang W S, Wang Q H and Lee D H 2012 Phys. Rev. B 86 024523
[27] Xiang Y Y, Wang F, Wang D, Wang Q H and Lee D H 2012 Phys. Rev. B 86 134508
[28] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135
[29] Xiang Y Y, Yang Y, Wang W S, Li Z Z and Wang Q H 2013 Phys. Rev. B 88 104516
[30] Yang Y, Wang W S, Xiang Y Y, Li Z Z and Wang Q H 2013 Phys. Rev. B 88 094519
[31] Wang Q H, Platt C, Yang Y, Honerkamp C, Zhang F C, Hanke W, Rice T M and Thomale R 2013 Europhys. Lett. 104 17013
[32] Yang Y, Wang W S, Liu J G, et al. 2014 Phys. Rev. B 89 094518
[33] Wang W S, Yang Y and Wang Q H 2014 Phys. Rev. B 90 094514
[34] Christianson A D, et al. 2008 Nature 456 930
[35] Lumsden M D, Christianson A D, Parshall D, Stone M B, Nagler S E, MacDougall G J, Mook H A, Lokshin K, Egami T, Abernathy D L, Goremychkin E A, Osborn R, McGuire M A, Sefat A S, Jin R, Sales B C and Mandrus D 2009 Phys. Rev. Lett. 102 107005
[36] Qiu Y, Bao W, Zhao Y, Broholm C, Stanev V, Tesanovic Z, Gasparovic Y C, Chang S, Hu J, Qian B, Fang M and Mao Z 2009 Phys. Rev. Lett. 103 067008
[37] Babkevich P, Roessli B, Gvasaliya S N, Regnault L P, Freeman P G, Pomjakushina E, Conder K and Boothroyd A T 2011 Phys. Rev. B 83 180506
[38] Dai P 2015 Rev. Mod. Phys. 87 855
[39] Kuhn S J, Kidder M K, Parker D S, Cruz C dela, McGuire M A, Chance W M, Li L, Debeer-Schmitt L, Ermentrout J, Littrell K C, Eskildsen M R and Sefat A S 2017 Physica C 534 29
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[3] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[4] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[5] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[6] A review of some new perspectives on the theory of superconducting Sr2RuO4
Wen Huang(黄文). Chin. Phys. B, 2021, 30(10): 107403.
[7] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[8] Quantum Monte Carlo study of the dominating pairing symmetry in doped honeycomb lattice
Xingchuan Zhu(朱兴川), Tao Ying(应涛), Huaiming Guo(郭怀明), Shiping Feng(冯世平). Chin. Phys. B, 2019, 28(7): 077401.
[9] Nonlinear uniaxial pressure dependence of the resistivity in Sr1-xBaxFe1.97Ni0.03As2
Hui-Can Mao(毛慧灿), Dong-Liang Gong(龚冬良), Xiao-Yan Ma(马肖燕), Hui-Qian Luo(罗会仟), Yi-Feng Yang(杨义峰), Lei Shan(单磊), Shi-Liang Li(李世亮). Chin. Phys. B, 2018, 27(8): 087402.
[10] Thermal fluctuation conductivity and dimensionality in iron-based superconductors
Rui Wang(王蕊), Ding-Ping Li(李定平). Chin. Phys. B, 2016, 25(9): 097401.
[11] Hybrid crystals of cuprates and iron-based superconductors
Xia Dai(代霞), Cong-Cong Le(勒聪聪), Xian-Xin Wu(吴贤新), Jiang-Ping Hu(胡江平). Chin. Phys. B, 2016, 25(7): 077402.
[12] Properties of pseudospin polarization on a graphene-based spin singlet superconducting junction
Jia Shuan-Wen (贾拴稳), Wang Jun-Tao (王军涛), Yang Yan-Ling (杨艳岭), Bai Chun-Xu (白春旭). Chin. Phys. B, 2013, 22(8): 087408.
[13] Review of nuclear magnetic resonance studies on iron-based superconductors
Ma Long (马龙), Yu Wei-Qiang (于伟强). Chin. Phys. B, 2013, 22(8): 087414.
[14] Photoemission study of iron-based superconductor
Liu Zhong-Hao (刘中灝), Cai Yi-Peng (蔡贻鹏), Zhao Yan-Ge (赵彦阁), Jia Lei-Lei (贾雷雷), Wang Shan-Cai (王善才). Chin. Phys. B, 2013, 22(8): 087406.
[15] Spin fluctuations and unconventional superconducting pairing in iron-based superconductors
Yu Shun-Li (于顺利), Li Jian-Xin (李建新). Chin. Phys. B, 2013, 22(8): 087411.
No Suggested Reading articles found!