CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Comparison of band structure and superconductivity in FeSe0.5Te0.5 and FeS |
Yang Yang(杨阳)1, Shi-Quan Feng(冯世全)1, Yuan-Yuan Xiang(向圆圆)2, Hong-Yan Lu(路洪艳)3, Wan-Sheng Wang(王万胜)4 |
1. College of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; 2. College of Science, Hohai University, Nanjing 210098, China; 3. School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China; 4. Department of Physics, Ningbo University, Ningbo 315211, China |
|
|
Abstract The isovalent iron chalcogenides, FeSe0.5Te0.5 and FeS, share similar lattice structures but behave very differently in superconducting properties. We study the underlying mechanism theoretically. By first principle calculations and tight-binding fitting, we find the spectral weight of the dX2-Y2 orbital changes remarkably in these compounds. While there are both electron and hole pockets in FeSe0.5Te0.5 and FeS, a small hole pocket with a mainly dX2-Y2 character is absent in FeS. We find the spectral weights of dX2-Y2 orbital change remarkably, which contribute to electron and hole pockets in FeSe0.5Te0.5 but only to electron pockets in FeS. We then perform random-phase-approximation and unbiased singular-mode functional renormalization group calculations to investigate possible superconducting instabilities that may be triggered by electron-electron interactions on top of such bare band structures. For FeSe0.5Te0.5, we find a fully gapped s±-wave pairing that can be associated with spin fluctuations connecting electron and hole pockets. For FeS, however, a nodal dxy (or dx2-y2 in an unfolded Broullin zone) is favorable and can be related to spin fluctuations connecting the electron pockets around the corner of the Brillouin zone. Apart from the difference in chacogenide elements, we propose the main source of the difference is from the dX2-Y2 orbital, which tunes the Fermi surface nesting vector and then influences the dominant pairing symmetry.
|
Received: 14 June 2017
Revised: 13 July 2017
Accepted manuscript online:
|
PACS:
|
74.20.-z
|
(Theories and models of superconducting state)
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11604303, 11604168, and 11574108). |
Corresponding Authors:
Wan-Sheng Wang
E-mail: 2014070@zzuli.edu.cn
|
Cite this article:
Yang Yang(杨阳), Shi-Quan Feng(冯世全), Yuan-Yuan Xiang(向圆圆), Hong-Yan Lu(路洪艳), Wan-Sheng Wang(王万胜) Comparison of band structure and superconductivity in FeSe0.5Te0.5 and FeS 2017 Chin. Phys. B 26 127401
|
[1] |
Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
|
[2] |
Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Huang H H, Wu C J, Ma X C, Chen X and Xue Q K 2011 Science 332 1410
|
[3] |
Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, L?hneysen H v, Shibauchi T and Matsuda Y 2014 Proc. Natl. Acad. Sci. USA 111 16309
|
[4] |
Dong J K, Guan T Y, Zhou S Y, Qiu X, Ding L, Zhang C, Patel U, Xiao Z L and Li S Y 2009 Phys. Rev. B 80 024518
|
[5] |
Lin J Y, Hsieh Y S, Chareev D A, Vasiliev A N, Parsons Y and Yang H D 2011 Phys. Rev. B 84 220507
|
[6] |
Hanaguri T, Niitaka S, Kuroki K and Takagi H 2010 Science 328 474
|
[7] |
Miao H, Richard P, Tanaka Y, Nakayama K, Qian T, Umezawa K, Sato T, Xu Y M, Shi Y B, Xu N, Wang X P, Zhang P, Yang H B, Xu Z J, Wen J S, Gu G D, Dai X, Hu J P, Takahashi T and Ding H 2012 Phys. Rev. B 85 094506
|
[8] |
Okazaki K, Ito Y, Ota Y, Kotani Y, Shimojima T, Kiss T, Watanabe S, Chen C T, Niitaka S, Hanaguri T, Takagi H, Chainani A and Shin S 2012 Phys. Rev. Lett. 109 237011
|
[9] |
Lai X, Zhang H, Wang Y, Wang X, Zhang X, Lin J and Huang F 2015 J. Am. Chem. Soc. 137 10148
|
[10] |
Ying T, Lai X, Hong X, Xu Y, He L, Zhang J, Wang M, Yu Y, Huang F and Li S 2016 Phys. Rev. B 94 100504
|
[11] |
Xing J, Lin H, Li Y, Li S, Zhu X, Yang H and Wen H H 2016 Phys. Rev. B 93 104520
|
[12] |
Yang Y, Wang W S, Lu H Y, Xiang Y Y and Wang Q H 2016 Phys. Rev. B 93 104514
|
[13] |
Kuroki K, Usui H, Onari S, Arita R and Aoki H 2009 Phys. Rev. B 79 224511
|
[14] |
Louca D, Horigane K, Llobet A, Arita R, Ji S, Katayama N, Konbu S, Nakamura K, Koo T Y, Tong P and Yamada K 2010 Phys. Rev. B 81 134524
|
[15] |
Ciechan A, Winiarski M J and Czekala M S 2012 Acta Physica Polonica A 121 820
|
[16] |
Ciechan A, Winiarski M J and Czekala M S 2013 Intermetallics 41 44
|
[17] |
Giannozzi P, et al. 2009 J. Phys.:Condens. Matter 21 395502
|
[18] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[19] |
Miyake T, Nakamura K, Arita R and Imada M 2010 J. Phys. Soc. Jpn. 79 044705
|
[20] |
Chen F, Zhou B, Zhang Y, Wei J, Ou H W, Zhao J F, He C, Ge Q Q, Arita M, Shimada K, Namatame H, Taniguchi M, Lu Z Y, Hu J, Cui X Y and Feng D L 2010 Phys. Rev. B 81 014526
|
[21] |
Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
|
[22] |
Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
|
[23] |
Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H and Aoki H 2008 Phys. Rev. Lett. 101 087004
|
[24] |
Böhm T, Kretzschmar F, Baum A, Rehm M, Jost D, Ahangharnejhad R H, Thomale R, Platt C, Maier T A, Hanke W, Moritz B, Devereaux T P, Scalapino D J, Maiti S, Hirschfeld P J, Adelmann P, Wolf T, Wen H H and Hackl R 2015 arXiv:1703, 07749[cond-mat.supr-con]
|
[25] |
Wang W S, Xiang Y Y, Wang Q H, Wang F, Yang F and Lee D H 2012 Phys. Rev. B 85 035414
|
[26] |
Xiang Y Y, Wang W S, Wang Q H and Lee D H 2012 Phys. Rev. B 86 024523
|
[27] |
Xiang Y Y, Wang F, Wang D, Wang Q H and Lee D H 2012 Phys. Rev. B 86 134508
|
[28] |
Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135
|
[29] |
Xiang Y Y, Yang Y, Wang W S, Li Z Z and Wang Q H 2013 Phys. Rev. B 88 104516
|
[30] |
Yang Y, Wang W S, Xiang Y Y, Li Z Z and Wang Q H 2013 Phys. Rev. B 88 094519
|
[31] |
Wang Q H, Platt C, Yang Y, Honerkamp C, Zhang F C, Hanke W, Rice T M and Thomale R 2013 Europhys. Lett. 104 17013
|
[32] |
Yang Y, Wang W S, Liu J G, et al. 2014 Phys. Rev. B 89 094518
|
[33] |
Wang W S, Yang Y and Wang Q H 2014 Phys. Rev. B 90 094514
|
[34] |
Christianson A D, et al. 2008 Nature 456 930
|
[35] |
Lumsden M D, Christianson A D, Parshall D, Stone M B, Nagler S E, MacDougall G J, Mook H A, Lokshin K, Egami T, Abernathy D L, Goremychkin E A, Osborn R, McGuire M A, Sefat A S, Jin R, Sales B C and Mandrus D 2009 Phys. Rev. Lett. 102 107005
|
[36] |
Qiu Y, Bao W, Zhao Y, Broholm C, Stanev V, Tesanovic Z, Gasparovic Y C, Chang S, Hu J, Qian B, Fang M and Mao Z 2009 Phys. Rev. Lett. 103 067008
|
[37] |
Babkevich P, Roessli B, Gvasaliya S N, Regnault L P, Freeman P G, Pomjakushina E, Conder K and Boothroyd A T 2011 Phys. Rev. B 83 180506
|
[38] |
Dai P 2015 Rev. Mod. Phys. 87 855
|
[39] |
Kuhn S J, Kidder M K, Parker D S, Cruz C dela, McGuire M A, Chance W M, Li L, Debeer-Schmitt L, Ermentrout J, Littrell K C, Eskildsen M R and Sefat A S 2017 Physica C 534 29
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|