Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 107402    DOI: 10.1088/1674-1056/abb21f
Rapid Communication Prev   Next  

Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor

Cong Li(李聪)1,2, Guangyang Dai(代光阳)1,2, Yongqing Cai(蔡永青)1,2, Yang Wang(王阳)1,2, Xiancheng Wang(望贤成)1,2, Qiang Gao(高强)1,2, Guodong Liu(刘国东)1, Yuan Huang(黄元)1, Qingyan Wang(王庆艳)1, Fengfeng Zhang(张丰丰)3, Shenjin Zhang(张申金)3, Feng Yang(杨峰)3, Zhimin Wang(王志敏)3, Qinjun Peng(彭钦军)3, Zuyan Xu(许祖彦)3, Changqing Jin(靳常青)1,2,4, Lin Zhao(赵林)1,†, and X J Zhou(周兴江)1,2,4,5,
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
5 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  

Super-high resolution laser-based angle-resolved photoemission measurements are carried out on LiFeAs superconductor to investigate its electron dynamics. Three energy scales at ∼ 20 meV, ∼ 34 meV, and ∼ 55 meV are revealed for the first time in the electron self-energy both in the superconducting state and normal state. The ∼ 20 meV and ∼ 34 meV scales can be attributed to the coupling of electrons with sharp bosonic modes which are most likely phonons. These observations provide definitive evidence on the existence of mode coupling in iron-based superconductors.

Keywords:  angle-resolved photoemission spectroscopy (ARPES)      iron-based superconductor      electron boson coupling  
Received:  14 August 2020      Revised:  14 August 2020      Accepted manuscript online:  25 August 2020
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  63.20.kd (Phonon-electron interactions)  
  74.25.Kc (Phonons)  
Corresponding Authors:  Corresponding author. E-mail: lzhao@iphy.ac.cn Corresponding author. E-mail: XJZhou@iphy.ac.cn   
About author: 
†Corresponding author. E-mail: lzhao@iphy.ac.cn
‡Corresponding author. E-mail: XJZhou@iphy.ac.cn
* Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300300, 2016YFA0300600, 2017YFA0302900,2018YFA0704200, 2018YFA0305600, and 2019YFA0308000), the National Natural Science Foundation of China (Grant Nos. 11888101, 11922414, and 11874405), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000 and XDB33010300), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2017013), and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G06).

Cite this article: 

Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡ Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor 2020 Chin. Phys. B 29 107402

Fig. 1.  

Electronic structure of LiFeAs measured under different polarization geometries. (a) Overall Fermi surface of LiFeAs measured with a photon energy of 21.218 eV. Two Fermi surface sheets observed around Γ are labeled as β (blue circle) and γ (pink circle), while two crossing elliptical Fermi surface sheets observed around M point are labeled as δ (black ellipses). (b)–(d) Fermi surface of LiFeAs measured by using laser ARPES with a photon energy of 6.994 eV under different polarization geometries. The directions of the electric field vector E corresponding to the three polarization geometries are marked by double arrows in the bottom-right corner of each panel. We note that, while the electric field vector E in (c) fully lies in the sample plane, there is some component of the electric field vector E that is outside of the sample plane in (b) and (d). In (b), the α band is also marked (dashed green circle) around Γ in addition to the β and γ Fermi surfaces. (e)–(g) The band structure of LiFeAs measured along the ΓX direction under three different polarization geometries that correspond to (b)–(d), respectively. The location of the momentum cut is marked in (b) by a red line. The green, blue, and pink arrows point to the α, β, and γ bands, respectively.

Fig. 2.  

Electron dynamics of the γ band of LiFeAs measured along the ΓX direction at 20 K. (a) The γ band measured along the ΓX direction. The location of the momentum cut is marked by the red line in the inset. (b) The second derivative image of (a) with respect to energy. (c) Second derivative image of the simulated single-particle spectral function which considers electron coupling with two bosonic modes at 20 meV and 34 meV. (d) Momentum distribution curves (MDCs) at several representative binding energies. The MDCs are fitted by Loretzians that are overlaid as dashed lines on the measured data. (e) Representative energy distribution curves (EDCs) at several momenta. (f) Dispersion relation obtained by MDC fitting. The dashed red and blue lines represent empirical bare bands that are used to get the effective real parts of the electron self-energy Re Σ (red line and blue line) shown in (g). The observed features are marked by pink, green, and orange strips. (h) Corresponding MDC width (full width at half maximum, FWHM) of the γ band in (a) from the MDC fitting.

Fig. 3.  

Electron dynamics of the β band of LiFeAs measured along the ΓX direction at 20 K. (a) The β band measured along the ΓX direction. The location of the momentum cut is marked by the red line in the inset. (b) The second derivative image of (a) with respect to energy. (c) MDCs at several representative binding energies. The MDCs are fitted by Loretzians that are overlaid as dashed lines on the measured data. (d) Representative EDCs at several momenta. (e) Dispersion relation obtained by MDC fitting. The dashed red and blue lines represent empirical bare bands that are used to get the effective real parts of the electron self-energy, Re Σ, (red line and blue line) shown in (f). The observed features are marked by pink, green, and orange strips. (g) Corresponding MDC width (FWHM) of the β band in (a) from the MDC fitting.

Fig. 4.  

Temperature dependence of the electron dynamics for the β and γ bands in LiFeAs. (a) Temperature dependent effective real part of electron self-energy of the γ band. For clarity, the curves are offset along the vertical axis. (b) Corresponding MDC width of the γ band measured at different temperatures. The upper-right inset shows the MDC width near the EF region. (c) EDCs measured at the kF point of the γ band at different temperatures. The EDC at 12 K is also multiplied by 5 times to show the dip structure near 34 meV as marked by an arrow. The upper-left inset shows the temperature dependence of the EDC width (FWHM) of the γ band. (d) Temperature dependent effective real part of electron self-energy of the β band. The curves are offset along the vertical axis for clarity. (e) Corresponding MDC width of the γ band measured at different temperatures. The upper-right inset shows the MDC width near the EF region. (f) EDCs measured at the kF point of the β band at different temperatures. The upper-left inset shows the temperature dependence of the EDC width (FWHM) of the β band.

[1]
Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175 DOI: 10.1103/PhysRev.108.1175
[2]
McMillan W L, Rowell J M 1965 Phys. Rev. Lett. 14 108 DOI: 10.1103/PhysRevLett.14.108
[3]
Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473 DOI: 10.1103/RevModPhys.75.473
[4]
Zhou X J et al. 2007 Handbook of high-temperature superconductivity: Theory and experiment Schrieffer J R Berlin Springer
[5]
Zhou X J, He S L, Liu G D et al. 2018 Rep. Prog. Phys. 81 062101 DOI: 10.1088/1361-6633/aab0cc
[6]
Bogdanov P V, Lanzara A, Kellar S A et al. 2000 Phys. Rev. Lett. 85 2581 DOI: 10.1103/PhysRevLett.85.2581
[7]
Johnson P D, Valla T, Fedorov A V et al. 2001 Phys. Rev. Lett. 87 177007 DOI: 10.1103/PhysRevLett.87.177007
[8]
Kaminski A, Randeria M, Campuzano J C et al. 2001 Phys. Rev. Lett. 86 1070 DOI: 10.1103/PhysRevLett.86.1070
[9]
Lanzara A, Bogdanov P V, Zhou X J et al. 2001 Nature 412 510 DOI: 10.1038/35087518
[10]
Zhou X J et al. 2003 Nature 423 398 DOI: 10.1038/423398a
[11]
Kordyuk A A, Borisenko S V, Zabolotnyy V B et al. 2006 Phys. Rev. Lett. 97 017002 DOI: 10.1103/PhysRevLett.97.017002
[12]
Zhang W T, Liu G D, Zhao L et al. 2008 Phys. Rev. Lett. 100 107002 DOI: 10.1103/PhysRevLett.100.107002
[13]
Gromko A D, Fedorov A V, Chuang Y D et al. 2003 Phys. Rev. B 68 174520 DOI: 10.1103/PhysRevB.68.174520
[14]
Kim T K, Kordyuk A A, Borisenko S V et al. 2003 Phys. Rev. Lett. 91 167002 DOI: 10.1103/PhysRevLett.91.167002
[15]
Cuk T, Baumberger F, Lu D H et al. 2004 Phys. Rev. Lett. 93 117003 DOI: 10.1103/PhysRevLett.93.117003
[16]
He J F et al. 2013 Phys. Rev. Lett. 111 107005 DOI: 10.1103/PhysRevLett.111.107005
[17]
Ronning F et al. 2005 Phys. Rev. B 71 094518 DOI: 10.1103/PhysRevB.71.094518
[18]
Graf J et al. 2007 Phys. Rev. Lett. 98 067004 DOI: 10.1103/PhysRevLett.98.067004
[19]
Xie B P et al. 2007 Phys. Rev. Lett. 98 147001 DOI: 10.1103/PhysRevLett.98.147001
[20]
Valla T et al. 2007 Phys. Rev. Lett. 98 167003 DOI: 10.1103/PhysRevLett.98.167003
[21]
Meevasana W et al. 2007 Phys. Rev. B 75 174506 DOI: 10.1103/PhysRevB.75.174506
[22]
Zhang W T et al. 2008 Phys. Rev. Lett. 101 017002 DOI: 10.1103/PhysRevLett.101.017002
[23]
Zhou X J et al. 2005 Phys. Rev. Lett. 95 117001 DOI: 10.1103/PhysRevLett.95.117001
[24]
Zhao L et al. 2011 Phys. Rev. B 83 184515 DOI: 10.1103/PhysRevB.83.184515
[25]
Bok J M et al. 2016 Sci. Adv. 2 e1501329 DOI: 10.1126/sciadv.1501329
[26]
Boeri L et al. 2008 Phys. Rev. Lett. 101 026403 DOI: 10.1103/PhysRevLett.101.026403
[27]
Kuroki K et al. 2008 Phys. Rev. Lett. 101 087004 DOI: 10.1103/PhysRevLett.101.087004
[28]
Mazin I I et al. 2008 Phys. Rev. Lett. 101 057003 DOI: 10.1103/PhysRevLett.101.057003
[29]
Chubukov A V et al. 2008 Phys. Rev. B 78 134512 DOI: 10.1103/PhysRevB.78.134512
[30]
Kontani H, Onari S 2010 Phys. Rev. Lett. 104 157001 DOI: 10.1103/PhysRevLett.104.157001
[31]
Saito T et al. 2015 Phys. Rev. B 92 134522 DOI: 10.1103/PhysRevB.92.134522
[32]
Kordyuk A A et al. 2011 Phys. Rev. B 83 134513 DOI: 10.1103/PhysRevB.83.134513
[33]
Miao H et al. 2016 Phys. Rev. B 94 201109 DOI: 10.1103/PhysRevB.94.201109
[34]
Singh D J, Hu M H 2008 Phys. Rev. Lett. 100 237003 DOI: 10.1103/PhysRevLett.100.237003
[35]
Zhao L et al. 2008 Chin. Phys. Lett. 25 4402 DOI: 10.1088/0256-307X/25/12/061
[36]
Paglione J et al. 2010 Nat. Phys. 6 645 DOI: 10.1038/nphys1759
[37]
Ye Z R et al. 2014 Phys. Rev. X 4 031041 DOI: 10.1103/PhysRevX.4.031041
[38]
Liu D F et al. 2016 Chin. Phys. Lett. 33 077402 DOI: 10.1088/0256-307X/33/7/077402
[39]
Wang X C et al. 2008 Solid Sate Commun. 148 538 DOI: 10.1016/j.ssc.2008.09.057
[40]
Tapp J H et al. 2008 Phys. Rev. B 78 060505 DOI: 10.1103/PhysRevB.78.060505
[41]
Borisenko S V et al. 2010 Phys. Rev. Lett. 105 067002 DOI: 10.1103/PhysRevLett.105.067002
[42]
Liu G D et al. 2008 Rev. Sci. Instrum. 79 023105 DOI: 10.1063/1.2835901
[43]
Zhang P et al. 2019 Nat. Phys. 15 41 DOI: 10.1038/s41567-018-0280-z
[44]
Engelsberg S, Schrieffer J R 1963 Phys. Rev. 131 993 DOI: 10.1103/PhysRev.131.993
[45]
Sandvik A W, Scalapino D J, Bickers N E 2004 Phys. Rev. B 69 094523 DOI: 10.1103/PhysRevB.69.094523
[46]
Um Y J et al. 2012 Phys. Rev. B 85 012501 DOI: 10.1103/PhysRevB.85.012501
[47]
Qureshi N et al. 2012 Phys. Rev. Lett. 108 117001 DOI: 10.1103/PhysRevLett.108.117001
[48]
Merritt A et al. 2016 J. Supercond. Nov. Magn. 29 3049 DOI: 10.1007/s10948-016-3810-x
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[3] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[4] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[5] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[6] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[7] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[8] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[9] Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2
Tao Xie(谢涛), Chang Liu(刘畅), Tom Fennell, Uwe Stuhr, Shi-Liang Li(李世亮), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2021, 30(12): 127402.
[10] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
[11] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[12] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[13] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[14] Evolution of incommensurate superstructure and electronic structure with Pb substitution in (Bi2-xPbx)Sr2CaCu2O8+δ superconductors
Jing Liu(刘静), Lin Zhao(赵林), Qiang Gao(高强), Ping Ai(艾平), Lu Zhang(张璐), Tao Xie(谢涛), Jian-Wei Huang(黄建伟), Ying Ding(丁颖), Cheng Hu(胡成), Hong-Tao Yan(闫洪涛), Chun-Yao Song(宋春尧), Yu Xu(徐煜), Cong Li(李聪), Yong-Qing Cai(蔡永青), Hong-Tao Rong(戎洪涛), Ding-Song Wu(吴定松), Guo-Dong Liu(刘国东), Qing-Yan Wang(王庆艳), Yuan Huang(黄元), Feng-Feng Zhang(张丰丰), Feng Yang(杨峰), Qin-Jun Peng(彭钦军), Shi-Liang Li(李世亮), Huai-Xin Yang(杨槐馨), Jian-Qi Li(李建奇), Zu-Yan Xu(许祖彦), Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2019, 28(7): 077403.
[15] Realization of low-energy type-Ⅱ Dirac fermions in (Ir1-xPtx)Te2 superconductors
Bin-Bin Fu(付彬彬), Chang-Jiang Yi(伊长江), Zhi-Jun Wang(王志俊), Meng Yang(杨萌), Bai-Qing Lv(吕佰晴), Xin Gao(高鑫), Man Li(李满), Yao-Bo Huang(黄耀波), Hong-Ming Weng(翁红明), You-Guo Shi(石友国), Tian Qian(钱天), Hong Ding(丁洪). Chin. Phys. B, 2019, 28(3): 037103.
No Suggested Reading articles found!